Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Congruence/Basic.lean

Statistics

MetricCount
Definitionsgi, instCompleteLattice, instDistribMulActionQuotientOfIsScalarTower, instInfSet, instLE, instMulSemiringActionQuotientOfIsScalarTower, instPartialOrder, instSMulQuotient
8
Theoremscoe_bot, coe_iInf, coe_inf, coe_sInf, coe_smul, coe_top, comap_mono, inf_iff_and, instIsCentralScalarQuotient, instIsScalarTowerQuotient, instNontrivial, instSMulCommClassQuotient, instSubsingleton, isScalarTower_right, le_def, nontrivial_iff, nontrivial_quotient, ringConGen_eq, ringConGen_idem, ringConGen_le, ringConGen_mono, ringConGen_of_ringCon, sInf_toSetoid, sSup_def, sSup_eq_ringConGen, smulCommClass, smulCommClass', subsingleton_iff, subsingleton_quotient, sup_def, sup_eq_ringConGen, toCon_bot, toCon_eq_bot, toCon_eq_top, toCon_top
35
Total43

RingCon

Definitions

NameCategoryTheorems
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
22 mathmath: toCon_eq_bot, sSup_def, comap_bot, matrix_top, TwoSidedIdeal.iSup_ringCon, sup_def, subsingleton_quotient, inf_iff_and, coe_inf, sSup_eq_ringConGen, TwoSidedIdeal.sSup_ringCon, matrix_bot, coe_bot, TwoSidedIdeal.top_ringCon, TwoSidedIdeal.sup_ringCon, toCon_eq_top, TwoSidedIdeal.bot_ringCon, coe_top, TwoSidedIdeal.inf_ringCon, sup_eq_ringConGen, toCon_bot, toCon_top
instDistribMulActionQuotientOfIsScalarTower πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
6 mathmath: TwoSidedIdeal.iInf_ringCon, ringConGen_eq, sInf_toSetoid, TwoSidedIdeal.sInf_ringCon, coe_iInf, coe_sInf
instLE πŸ“–CompOp
8 mathmath: TwoSidedIdeal.orderIsoRingCon_symm_apply, TwoSidedIdeal.ringCon_le_iff, TwoSidedIdeal.orderIsoRingCon_apply, opOrderIso_apply, le_def, opOrderIso_symm_apply, ringConGen_le, ringConGen_mono
instMulSemiringActionQuotientOfIsScalarTower πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
2 mathmath: matrix_strictMono_of_nonempty, matrix_monotone
instSMulQuotient πŸ“–CompOp
7 mathmath: smulCommClass, instSMulCommClassQuotient, isScalarTower_right, instIsScalarTowerQuotient, coe_smul, smulCommClass', instIsCentralScalarQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–mathematicalβ€”DFunLike.coe
RingCon
instFunLikeForallProp
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
coe_iInf πŸ“–mathematicalβ€”DFunLike.coe
RingCon
instFunLikeForallProp
iInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
β€”iInf.eq_1
coe_sInf
Set.range_comp
sInf_range
coe_inf πŸ“–mathematicalβ€”DFunLike.coe
RingCon
instFunLikeForallProp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
Pi.instMinForall_mathlib
Prop.instCompleteLattice
β€”β€”
coe_sInf πŸ“–mathematicalβ€”DFunLike.coe
RingCon
instFunLikeForallProp
InfSet.sInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
Set.image
β€”sInf_image
iInf_apply
iInf_Prop_eq
coe_smul πŸ“–mathematicalβ€”toQuotient
MulOne.toMul
MulOneClass.toMulOne
Quotient
instSMulQuotient
β€”β€”
coe_top πŸ“–mathematicalβ€”DFunLike.coe
RingCon
instFunLikeForallProp
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”β€”
comap_mono πŸ“–mathematicalRingCon
instLE
comapβ€”β€”
inf_iff_and πŸ“–mathematicalβ€”DFunLike.coe
RingCon
instFunLikeForallProp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
β€”β€”
instIsCentralScalarQuotient πŸ“–mathematicalβ€”IsCentralScalar
Quotient
MulOne.toMul
MulOneClass.toMulOne
instSMulQuotient
MulOpposite
IsScalarTower.op_left
β€”IsScalarTower.op_left
Con.instIsCentralScalar
instIsScalarTowerQuotient πŸ“–mathematicalβ€”IsScalarTower
Quotient
MulOne.toMul
MulOneClass.toMulOne
instSMulQuotient
β€”Con.instIsScalarTower
instNontrivial πŸ“–mathematicalβ€”Nontrivial
RingCon
β€”exists_pair_ne
instSMulCommClassQuotient πŸ“–mathematicalβ€”SMulCommClass
Quotient
MulOne.toMul
MulOneClass.toMulOne
instSMulQuotient
β€”Con.instSMulCommClass
instSubsingleton πŸ“–mathematicalβ€”RingConβ€”ext
refl
isScalarTower_right πŸ“–mathematicalβ€”IsScalarTower
Quotient
MulOne.toMul
MulOneClass.toMulOne
instSMulQuotient
instMulQuotient
β€”Quotient.indβ‚‚'
smul_mul_assoc
le_def πŸ“–mathematicalβ€”RingCon
instLE
DFunLike.coe
instFunLikeForallProp
β€”β€”
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
RingCon
β€”subsingleton_or_nontrivial
instSubsingleton
instNontrivial
nontrivial_quotient πŸ“–mathematicalβ€”Nontrivial
Quotient
β€”β€”
ringConGen_eq πŸ“–mathematicalβ€”ringConGen
InfSet.sInf
RingCon
instInfSet
setOf
β€”le_antisymm
refl
symm
trans
add
mul
sInf_le
ringConGen_idem πŸ“–mathematicalβ€”ringConGen
DFunLike.coe
RingCon
instFunLikeForallProp
β€”ringConGen_of_ringCon
ringConGen_le πŸ“–mathematicalDFunLike.coe
RingCon
instFunLikeForallProp
instLE
ringConGen
β€”ringConGen_eq
sInf_le
ringConGen_mono πŸ“–mathematicalβ€”RingCon
instLE
ringConGen
β€”ringConGen_le
ringConGen_of_ringCon πŸ“–mathematicalβ€”ringConGen
DFunLike.coe
RingCon
instFunLikeForallProp
β€”le_antisymm
ringConGen_eq
sInf_le
sInf_toSetoid πŸ“–mathematicalβ€”Con.toSetoid
toCon
InfSet.sInf
RingCon
instInfSet
Setoid.instInfSet
Set.image
β€”Setoid.ext
sSup_def πŸ“–mathematicalβ€”SupSet.sSup
RingCon
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
ringConGen
Pi.supSet
Prop.instCompleteLattice
Set.image
DFunLike.coe
instFunLikeForallProp
β€”sSup_eq_ringConGen
sSup_image
iSup_apply
iSup_Prop_eq
sSup_eq_ringConGen πŸ“–mathematicalβ€”SupSet.sSup
RingCon
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
ringConGen
Set
Set.instMembership
DFunLike.coe
instFunLikeForallProp
β€”ringConGen_eq
Set.ext
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
Quotient
MulOne.toMul
MulOneClass.toMulOne
instSMulQuotient
instMulQuotient
β€”Quotient.indβ‚‚'
mul_smul_comm
smulCommClass' πŸ“–mathematicalβ€”SMulCommClass
Quotient
MulOne.toMul
MulOneClass.toMulOne
instMulQuotient
instSMulQuotient
β€”SMulCommClass.symm
smulCommClass
subsingleton_iff πŸ“–mathematicalβ€”RingConβ€”β€”
subsingleton_quotient πŸ“–mathematicalβ€”Quotient
Top.top
RingCon
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
sup_def πŸ“–mathematicalβ€”RingCon
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
ringConGen
Pi.instMaxForall_mathlib
Prop.instCompleteLattice
DFunLike.coe
instFunLikeForallProp
β€”sup_eq_ringConGen
sup_eq_ringConGen πŸ“–mathematicalβ€”RingCon
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
ringConGen
DFunLike.coe
instFunLikeForallProp
β€”ringConGen_eq
toCon_bot πŸ“–mathematicalβ€”toCon
Bot.bot
RingCon
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Con
Con.instCompleteLattice
β€”β€”
toCon_eq_bot πŸ“–mathematicalβ€”toCon
Bot.bot
Con
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Con.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
RingCon
instCompleteLattice
β€”toCon_bot
toCon_eq_top πŸ“–mathematicalβ€”toCon
Top.top
Con
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Con.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
RingCon
instCompleteLattice
β€”toCon_top
toCon_top πŸ“–mathematicalβ€”toCon
Top.top
RingCon
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Con
Con.instCompleteLattice
β€”β€”

---

← Back to Index