Basic
π Source: Mathlib/RingTheory/Coprime/Basic.lean
Statistics
IsCoprime
Theorems
IsRelPrime
Theorems
Nat
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCoprime_iff π | mathematical | β | IsCoprimeinstCommSemiring | β | Unique.instSubsingletonisCoprime_one_leftisCoprime_one_right |
PNat
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCoprime_iff π | mathematical | β | IsCoprimeNat.instCommSemiringvalPNatinstOfNatPNatOfNeZeroNat | β | β |
Semifield
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isCoprime_iff π | mathematical | β | IsCoprimetoCommSemiring | β | eq_or_neMulZeroClass.zero_mulinv_mul_cancelβzero_add |
(root)
Theorems
---