Documentation Verification Report

Ideal

📁 Source: Mathlib/RingTheory/Coprime/Ideal.lean

Statistics

MetricCount
Definitions0
TheoremsiSup_iInf_eq_top_iff_pairwise
1
Total1

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_iInf_eq_top_iff_pairwise 📖mathematicalFinset.NonemptyiSup
Ideal
CommSemiring.toSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Finset
Finset.instMembership
iInf
Submodule.instInfSet
Top.top
Submodule.instTop
Set.Pairwise
SetLike.coe
Finset.instSetLike
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
eq_top_iff_one
Submodule.mem_iSup_finset_iff_exists_sum
Finset.Nonempty.cons_induction
Finset.sum_singleton
Finset.coe_singleton
iInf_congr_Prop
iInf_iInf_eq_left
iInf_neg
Finset.coe_cons
Set.pairwise_insert_of_symmetric
sup_comm
Submodule.coe_mem
mem_iInf
Finset.subset_cons
Finset.sum_cons
Finset.sum_congr
Pi.add_apply
Submodule.coe_add
Pi.single_eq_same
Pi.single_eq_of_ne
Submodule.coe_zero
Finset.sum_add_distrib
Finset.sum_pi_single'
Submodule.mem_sup
sum_mem
Finset.mem_cons_self
add_comm
sup_iInf_eq_top
instIsTwoSided
Finset.mem_cons
mul_mem_right
mul_mem_left
mul_one
Finset.mul_sum

---

← Back to Index