Documentation Verification Report

Lemmas

📁 Source: Mathlib/RingTheory/Coprime/Lemmas.lean

Statistics

MetricCount
DefinitionsinstDecidableRelIntIsCoprime
1
Theoremsprod_dvd_of_coprime, prod_dvd_of_isRelPrime, prod_dvd_of_coprime, prod_dvd_of_isRelPrime, isCoprime_gcdA, isCoprime_gcdB, isCoprime_iff_gcd_eq_one, natCoprime, nat_coprime, of_prod_left, of_prod_right, pow, pow_iff, pow_left, pow_left_iff, pow_right, pow_right_iff, prod_left, prod_left_iff, prod_right, prod_right_iff, of_prod_left, of_prod_right, pow, pow_iff, pow_left, pow_left_iff, pow_right, pow_right_iff, prod_left, prod_left_iff, prod_right, prod_right_iff, cast, isCoprime, isCoprime_iff_coprime, isCoprime_num_den, exists_sum_eq_one_iff_pairwise_coprime, exists_sum_eq_one_iff_pairwise_coprime', ne_zero_or_ne_zero_of_nat_coprime, pairwise_coprime_iff_coprime_prod, pairwise_isRelPrime_iff_isRelPrime_prod
42
Total43

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
prod_dvd_of_coprime 📖mathematicalSet.Pairwise
SetLike.coe
Finset
instSetLike
Function.onFun
IsCoprime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
prod
CommSemiring.toCommMonoid
induction_on
prod_insert
IsCoprime.mul_dvd
IsCoprime.prod_right
coe_insert
mem_insert_self
Set.Pairwise.mono
mem_insert_of_mem
prod_dvd_of_isRelPrime 📖mathematicalSet.Pairwise
SetLike.coe
Finset
instSetLike
Function.onFun
IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
prodinduction_on
one_dvd
prod_insert
mem_insert_self
IsRelPrime.mul_dvd
IsRelPrime.prod_right
mem_insert_of_mem
Set.Pairwise.mono
coe_insert

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
prod_dvd_of_coprime 📖mathematicalPairwise
Function.onFun
IsCoprime
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
Finset.prod_dvd_of_coprime
Pairwise.set_pairwise
prod_dvd_of_isRelPrime 📖mathematicalPairwise
Function.onFun
IsRelPrime
CommMonoid.toMonoid
semigroupDvd
Monoid.toSemigroup
Finset.prod
Finset.univ
Finset.prod_dvd_of_isRelPrime
Pairwise.set_pairwise

Int

Theorems

NameKindAssumesProvesValidatesDepends On
isCoprime_gcdA 📖mathematicalIsCoprime
instCommSemiring
gcdAmul_comm
gcd_eq_gcd_ab
Nat.cast_eq_one
instCharZero
isCoprime_iff_gcd_eq_one
isCoprime_gcdB 📖mathematicalIsCoprime
instCommSemiring
gcdBadd_comm
mul_comm
gcd_eq_gcd_ab
Nat.cast_eq_one
instCharZero
isCoprime_iff_gcd_eq_one
isCoprime_iff_gcd_eq_one 📖mathematicalIsCoprime
instCommSemiring
gcd_dvd_iff
mul_comm
IsCoprime.eq_1
gcd_eq_gcd_ab
Nat.cast_one

IsCoprime

Theorems

NameKindAssumesProvesValidatesDepends On
natCoprime 📖IsCoprime
Int.instCommSemiring
Nat.isCoprime_iff_coprime
nat_coprime 📖IsCoprime
Int.instCommSemiring
natCoprime
of_prod_left 📖IsCoprime
Finset.prod
CommSemiring.toCommMonoid
Finset
Finset.instMembership
prod_left_iff
of_prod_right 📖IsCoprime
Finset.prod
CommSemiring.toCommMonoid
Finset
Finset.instMembership
prod_right_iff
pow 📖mathematicalIsCoprimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
pow_right
pow_left
pow_iff 📖mathematicalIsCoprime
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
pow_left_iff
pow_right_iff
pow_left 📖mathematicalIsCoprimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Finset.card_range
Finset.prod_const
prod_left
pow_left_iff 📖mathematicalIsCoprime
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
of_prod_left
Finset.prod_const
Finset.card_range
Finset.mem_range
pow_left
pow_right 📖mathematicalIsCoprimeMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Finset.card_range
Finset.prod_const
prod_right
pow_right_iff 📖mathematicalIsCoprime
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
isCoprime_comm
pow_left_iff
prod_left 📖mathematicalIsCoprimeFinset.prod
CommSemiring.toCommMonoid
Finset.cons_induction
isCoprime_one_left
Finset.prod_cons
mul_left
Finset.forall_mem_cons
prod_left_iff 📖mathematicalIsCoprime
Finset.prod
CommSemiring.toCommMonoid
Finset.induction_on
isCoprime_one_left
instIsEmptyFalse
Finset.prod_insert
mul_left_iff
Finset.forall_mem_insert
prod_right 📖mathematicalIsCoprimeFinset.prod
CommSemiring.toCommMonoid
prod_left
prod_right_iff 📖mathematicalIsCoprime
Finset.prod
CommSemiring.toCommMonoid
prod_left_iff

IsRelPrime

Theorems

NameKindAssumesProvesValidatesDepends On
of_prod_left 📖IsRelPrime
CommMonoid.toMonoid
Finset.prod
Finset
Finset.instMembership
prod_left_iff
of_prod_right 📖IsRelPrime
CommMonoid.toMonoid
Finset.prod
Finset
Finset.instMembership
prod_right_iff
pow 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Monoid.toNatPowpow_right
pow_left
pow_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Monoid.toNatPow
pow_left_iff
pow_right_iff
pow_left 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Monoid.toNatPowFinset.card_range
Finset.prod_const
prod_left
pow_left_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Monoid.toNatPow
of_prod_left
Finset.prod_const
Finset.card_range
Finset.mem_range
pow_left
pow_right 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Monoid.toNatPowFinset.card_range
Finset.prod_const
prod_right
pow_right_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Monoid.toNatPow
isRelPrime_comm
pow_left_iff
prod_left 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Finset.prodFinset.induction_on
isRelPrime_one_left
Finset.prod_insert
mul_left
Finset.forall_mem_insert
prod_left_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Finset.prod
Finset.induction_on
isRelPrime_one_left
instIsEmptyFalse
Finset.prod_insert
mul_left_iff
Finset.forall_mem_insert
prod_right 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Finset.prodprod_left
prod_right_iff 📖mathematicalIsRelPrime
CommMonoid.toMonoid
Finset.prod
prod_left_iff

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
isCoprime_iff_coprime 📖mathematicalIsCoprime
Int.instCommSemiring
Int.isCoprime_iff_gcd_eq_one

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
cast 📖mathematicalIsCoprime
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Int.cast_natCast
IsCoprime.intCast
isCoprime
isCoprime 📖mathematicalIsCoprime
Int.instCommSemiring
Nat.isCoprime_iff_coprime

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
isCoprime_num_den 📖mathematicalIsCoprime
Int.instCommSemiring
IsCoprime.of_isCoprime_of_dvd_left
Nat.Coprime.cast

(root)

Definitions

NameCategoryTheorems
instDecidableRelIntIsCoprime 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_sum_eq_one_iff_pairwise_coprime 📖mathematicalFinset.NonemptyFinset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finset.prod
CommSemiring.toCommMonoid
Finset
Finset.instSDiff
Finset.instSingleton
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Pairwise
SetLike.instMembership
Finset.instSetLike
Function.onFun
IsCoprime
Finset.Nonempty.cons_induction
Finset.sum_singleton
Finset.prod_congr
sdiff_self
mul_one
instIsEmptyFalse
Finset.pairwise_cons'
Finset.mem_sdiff
Finset.mem_singleton
Finset.mem_insert_self
Finset.sum_add_distrib
Finset.sum_pi_single'
mul_assoc
Finset.prod_eq_mul_prod_diff_singleton
Finset.erase_insert
Finset.sdiff_singleton_eq_erase
Finset.cons_eq_insert
Finset.sum_cons
Finset.sum_congr
Pi.single_eq_same
Pi.single_eq_of_ne
MulZeroClass.zero_mul
Finset.prod_eq_prod_diff_singleton_mul
mul_comm
sdiff_sdiff_comm
add_mul
Distrib.rightDistribClass
Finset.sum_mul
IsCoprime.symm
IsCoprime.prod_left
Finset.mul_sum
one_mul
ite_mul
exists_sum_eq_one_iff_pairwise_coprime' 📖mathematicalFinset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finset.prod
CommSemiring.toCommMonoid
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Finset.instSingleton
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Pairwise
Function.onFun
IsCoprime
Finset.coe_univ
exists_sum_eq_one_iff_pairwise_coprime
Finset.univ_nonempty
ne_zero_or_ne_zero_of_nat_coprime 📖IsCoprime.ne_zero_or_ne_zero
map_natCast
RingHom.instRingHomClass
IsCoprime.map
Nat.Coprime.isCoprime
pairwise_coprime_iff_coprime_prod 📖mathematicalPairwise
Finset
SetLike.instMembership
Finset.instSetLike
Function.onFun
IsCoprime
Finset.prod
CommSemiring.toCommMonoid
Finset.instSDiff
Finset.instSingleton
Finset.pairwise_subtype_iff_pairwise_finset'
IsCoprime.prod_right_iff
IsCoprime.symm
Finset.mem_singleton
Finset.mem_sdiff
pairwise_isRelPrime_iff_isRelPrime_prod 📖mathematicalPairwise
Finset
SetLike.instMembership
Finset.instSetLike
Function.onFun
IsRelPrime
CommMonoid.toMonoid
Finset.prod
Finset.instSDiff
Finset.instSingleton
IsRelPrime.prod_right_iff
Finset.mem_singleton
Finset.mem_sdiff

---

← Back to Index