Basic
📁 Source: Mathlib/RingTheory/DedekindDomain/Basic.lean
Statistics
Ideal.IsPrime
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isMaximal 📖 | mathematical | — | Ideal.IsMaximalCommSemiring.toSemiringCommRing.toCommSemiring | — | Ring.DimensionLEOne.maximalOfPrime |
IsDedekindDomain
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toIsDedekindRing 📖 | mathematical | — | IsDedekindRing | — | — |
toIsDomain 📖 | mathematical | — | IsDomainCommSemiring.toSemiringCommRing.toCommSemiring | — | — |
IsDedekindRing
Theorems
IsLocalRing
Theorems
IsPrincipalIdealRing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isDedekindDomain 📖 | mathematical | — | IsDedekindDomain | — | PrincipalIdealRing.isNoetherianRingRing.DimensionLEOne.principal_ideal_ringUniqueFactorizationMonoid.instIsIntegrallyClosedPrincipalIdealRing.to_uniqueFactorizationMonoid |
Ring
Definitions
| Name | Category | Theorems |
|---|---|---|
DimensionLEOne 📖 | CompData |
Ring.DimensionLEOne
Theorems
(root)
Definitions
Theorems
---