Documentation Verification Report

Factorization

πŸ“ Source: Mathlib/RingTheory/DedekindDomain/Factorization.lean

Statistics

MetricCount
Definitionscount, divMod, quotientEquiv, maxPowDividing
4
Theoremsfinite_factors, finprod_ne_zero, count_coe, count_coe_nonneg, count_finprod, count_finprod_coprime, count_finsuppProd, count_inv, count_maximal, count_maximal_coprime, count_mono, count_mul, count_mul', count_ne_zero, count_neg_zpow, count_one, count_pow, count_pow_self, count_prod, count_self, count_well_defined, count_zero, count_zpow, count_zpow_self, divMod_spec, divMod_zero_left, divMod_zero_of_not_le, divMod_zero_right, finite_factors, finite_factors', finprod_heightOneSpectrum_factorization, finprod_heightOneSpectrum_factorization', finprod_heightOneSpectrum_factorization_principal, finprod_heightOneSpectrum_factorization_principal_fraction, zero_divMod, finite_factors, finite_mulSupport, finite_mulSupport_coe, finite_mulSupport_inv, finprod_count, finprod_heightOneSpectrum_factorization, finprod_heightOneSpectrum_factorization_coe, finprod_not_dvd, map_algebraMap_eq_finset_prod_pow, maxPowDividing_eq_pow_multiset_count, exists_add_spanSingleton_mul_eq, exists_eq_span_pair, exists_sup_span_eq
48
Total52

Associates

Theorems

NameKindAssumesProvesValidatesDepends On
finite_factors πŸ“–mathematicalβ€”Filter.Eventually
IsDedekindDomain.HeightOneSpectrum
count
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
instCommMonoidWithZero
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
factors
Ideal.uniqueFactorizationMonoid
Filter.cofinite
β€”Ideal.uniqueFactorizationMonoid
IsScalarTower.right
Set.ext
count_ne_zero_iff_dvd
IsDedekindDomain.HeightOneSpectrum.irreducible
Filter.eventually_cofinite
Ideal.finite_factors
finprod_ne_zero πŸ“–β€”β€”β€”β€”mk_ne_zero
finprod_def
Finset.prod_ne_zero_iff
Ideal.instNontrivial
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
Ideal.uniqueFactorizationMonoid
IsDedekindDomain.HeightOneSpectrum.ne_bot
one_ne_zero
NeZero.one

FractionalIdeal

Definitions

NameCategoryTheorems
count πŸ“–CompOp
24 mathmath: count_well_defined, count_finsuppProd, count_coe_nonneg, count_mono, count_finprod_coprime, count_prod, count_finprod, count_ne_zero, count_maximal_coprime, count_mul, count_pow, count_zpow_self, count_neg_zpow, count_zero, count_one, count_zpow, count_pow_self, count_inv, count_mul', count_self, count_maximal, finite_factors, count_coe, finprod_heightOneSpectrum_factorization'
divMod πŸ“–CompOp
5 mathmath: divMod_zero_left, divMod_zero_of_not_le, divMod_zero_right, divMod_spec, zero_divMod
quotientEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
count_coe πŸ“–mathematicalβ€”count
coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.factors
Ideal.uniqueFactorizationMonoid
β€”Ideal.uniqueFactorizationMonoid
count_well_defined
spanSingleton.congr_simp
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
inv_one
spanSingleton_one
one_mul
Ideal.span_singleton_one
sub_eq_self
Nat.cast_eq_zero
Int.instCharZero
Ideal.one_eq_top
Associates.mk_one
Associates.factors_one
Ideal.instNontrivial
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Associates.count_zero
IsDedekindDomain.HeightOneSpectrum.associates_irreducible
count_coe_nonneg πŸ“–mathematicalβ€”count
coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”count.congr_simp
count_zero
Ideal.uniqueFactorizationMonoid
count_coe
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
count_finprod πŸ“–mathematicalβ€”count
finprod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”Set.Finite.mem_toFinset
finprod_eq_finset_prod_of_mulSupport_subset
Set.Finite.coe_toFinset
zpow_zero
Function.mem_mulSupport
Finsupp.prod.eq_1
count_finsuppProd
count_finprod_coprime πŸ“–mathematicalβ€”count
finprod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”finprod_mem_induction
count_one
count_mul'
add_zero
count_zpow
count_maximal_coprime
MulZeroClass.mul_zero
count_finsuppProd πŸ“–mathematicalβ€”count
Finsupp.prod
IsDedekindDomain.HeightOneSpectrum
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
DFunLike.coe
Finsupp
Finsupp.instFunLike
β€”Finsupp.prod.eq_1
count_prod
zpow_ne_zero
coeIdeal_ne_zero
IsDedekindDomain.HeightOneSpectrum.ne_bot
Finset.sum_congr
count_zpow
count_maximal
mul_ite
mul_one
MulZeroClass.mul_zero
Finset.sum_ite_eq'
Finsupp.mem_support_iff
count_inv πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
β€”IsDedekindDomain.toIsDomain
zpow_neg_one
count_neg_zpow
zpow_one
count_maximal πŸ“–mathematicalβ€”count
coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum.asIdeal
IsDedekindDomain.HeightOneSpectrum
β€”count_self
count_maximal_coprime
count_maximal_coprime πŸ“–mathematicalβ€”count
coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”RingHom.map_one
inv_one
spanSingleton_one
one_mul
coeIdeal_ne_zero
IsDedekindDomain.HeightOneSpectrum.ne_bot
IsDedekindDomain.HeightOneSpectrum.associates_irreducible
Ideal.uniqueFactorizationMonoid
count_well_defined
Ideal.span_singleton_one
Ideal.one_eq_top
Associates.mk_one
Associates.factors_one
Ideal.instNontrivial
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Associates.count_zero
sub_zero
pow_one
Associates.factors_prime_pow
Associates.count_some
Multiset.replicate_one
Multiset.count_eq_zero
Multiset.mem_singleton
Associates.mk_eq_mk_iff_associated
associated_iff_eq
Unique.instSubsingleton
IsDedekindDomain.HeightOneSpectrum.ext_iff
count_mono πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
countβ€”le_zero_iff
LE.le.trans
Eq.le
IsDedekindDomain.toIsDomain
mul_le_mul_right
instMulLeftMono
le_one_iff_exists_coeIdeal
inv_mul_cancelβ‚€
mul_inv_cancel_leftβ‚€
count_mul
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
inv_ne_zero
le_add_iff_nonneg_right
Int.instAddLeftMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
count_coe_nonneg
count_mul πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
β€”IsDedekindDomain.HeightOneSpectrum.associates_irreducible
exists_eq_spanSingleton_mul
IsDedekindDomain.toIsDomain
Associates.mk_eq_zero
Ideal.zero_eq_bot
Ideal.span_singleton_eq_bot
Associates.mk_ne_zero
ideal_factor_ne_zero
IsScalarTower.right
mul_assoc
mul_comm
spanSingleton_mul_spanSingleton
coeIdeal_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_inv
Ideal.uniqueFactorizationMonoid
count_well_defined
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
Associates.count_mul
IsScalarTower.left
Ideal.span_singleton_mul_span_singleton
Ideal.instIsTwoSided_1
Nat.cast_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
count_mul' πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instZero
β€”count_mul
not_ne_iff
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
instIsDomain
count_zero
count_ne_zero πŸ“–mathematicalβ€”count
Associates.count
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.factors
Ideal.uniqueFactorizationMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
FractionalIdeal
nonZeroDivisors
Field.toCommRing
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
exists_eq_spanSingleton_mul
IsDedekindDomain.toIsDomain
Ideal.span
Set
Set.instSingletonSet
β€”Ideal.uniqueFactorizationMonoid
exists_eq_spanSingleton_mul
IsDedekindDomain.toIsDomain
count_neg_zpow πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
β€”neg_zero
zpow_zero
count_one
zero_zpow
neg_ne_zero
count_zero
eq_neg_iff_add_eq_zero
count_mul
zpow_ne_zero
zpow_addβ‚€
neg_add_cancel
count_one πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instOne
β€”RingHom.map_one
Ideal.one_eq_top
coeIdeal_top
mul_one
inv_one
spanSingleton_one
Ideal.uniqueFactorizationMonoid
count_well_defined
one_ne_zero
NeZero.one
instNontrivialNonZeroDivisors
Ideal.span_singleton_one
sub_self
count_pow πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instPowNat
β€”pow_zero
MulZeroClass.zero_mul
count_one
pow_succ
count_mul'
le_antisymm
le_trans
le_of_eq
le_refl
ge_of_eq
count_zero
MulZeroClass.mul_zero
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
count_pow_self πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instPowNat
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”count_pow
count_self
mul_one
count_prod πŸ“–mathematicalβ€”count
Finset.prod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoid
commSemiring
Finset.sum
Int.instAddCommMonoid
β€”Finset.induction
Finset.prod_empty
Finset.sum_empty
count_one
Finset.mem_insert_of_mem
Finset.prod_ne_zero_iff
instNontrivialNonZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Finset.mem_insert_self
Finset.prod_insert
Finset.sum_insert
count_mul
count_self πŸ“–mathematicalβ€”count
coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”coeIdeal_ne_zero
IsDedekindDomain.HeightOneSpectrum.ne_bot
RingHom.map_one
inv_one
spanSingleton_one
one_mul
IsDedekindDomain.HeightOneSpectrum.associates_irreducible
Ideal.uniqueFactorizationMonoid
count_well_defined
Associates.count_self
Ideal.instNontrivial
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Ideal.span_singleton_one
Ideal.one_eq_top
Associates.mk_one
Associates.factors_one
Associates.count_zero
sub_zero
count_well_defined πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
count
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.factors
Ideal.uniqueFactorizationMonoid
Ideal.span
Set
Set.instSingletonSet
β€”exists_eq_spanSingleton_mul
IsDedekindDomain.toIsDomain
ideal_factor_ne_zero
constant_factor_ne_zero
spanSingleton_eq_zero_iff
RingHom.map_zero
IsLocalization.injective
le_refl
Ideal.span_singleton_eq_bot
Ideal.zero_eq_bot
IsDedekindDomain.HeightOneSpectrum.irreducible
Ideal.uniqueFactorizationMonoid
count.eq_1
sub_eq_sub_iff_add_eq_add
Associates.count_mul
Associates.mk_eq_zero
IsScalarTower.right
coeIdeal_injective
coeIdeal_mul
coeIdeal_span_singleton
div_eq_div_iff
div_spanSingleton
count_zero πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
β€”Ideal.uniqueFactorizationMonoid
count_zpow πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
β€”zpow_natCast
count_pow
count_neg_zpow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
count_zpow_self πŸ“–mathematicalβ€”count
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”count_zpow
count_self
mul_one
divMod_spec πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instAdd
instMul
spanSingleton
divMod
β€”divMod.eq_1
IsDedekindDomain.exists_add_spanSingleton_mul_eq
divMod_zero_left πŸ“–mathematicalβ€”divMod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
divMod_zero_of_not_le πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
divMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
divMod_zero_right πŸ“–mathematicalβ€”divMod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”instCanonicallyOrderedAdd
finite_factors πŸ“–mathematicalβ€”Filter.Eventually
IsDedekindDomain.HeightOneSpectrum
count
Filter.cofinite
β€”count.congr_simp
count_zero
Ideal.uniqueFactorizationMonoid
exists_eq_spanSingleton_mul
IsDedekindDomain.toIsDomain
count_ne_zero
finite_factors'
finite_factors' πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
Filter.Eventually
IsDedekindDomain.HeightOneSpectrum
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.factors
Ideal.uniqueFactorizationMonoid
Ideal.span
Set
Set.instSingletonSet
Filter.cofinite
β€”constant_factor_ne_zero
ideal_factor_ne_zero
Ideal.uniqueFactorizationMonoid
IsScalarTower.right
IsDedekindDomain.HeightOneSpectrum.irreducible
sub_self
Associates.count_ne_zero_iff_dvd
Set.mem_setOf_eq
Set.mem_union
Set.Finite.subset
Set.Finite.union
Ideal.finite_factors
finprod_heightOneSpectrum_factorization πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
finprod
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
semifield
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
Ideal.uniqueFactorizationMonoid
Ideal.span
Set
Set.instSingletonSet
β€”ideal_factor_ne_zero
Ideal.uniqueFactorizationMonoid
Ideal.finprod_heightOneSpectrum_factorization_coe
constant_factor_ne_zero
IsDedekindDomain.toIsDomain
div_spanSingleton
div_eq_mul_inv
coeIdeal_span_singleton
finprod_inv_distrib
finprod_mul_distrib
Ideal.finite_mulSupport_coe
Ideal.finite_mulSupport_inv
finprod_congr
zpow_addβ‚€
coeIdeal_ne_zero
IsDedekindDomain.HeightOneSpectrum.ne_bot
sub_eq_add_neg
finprod_heightOneSpectrum_factorization' πŸ“–mathematicalβ€”finprod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
count
β€”exists_eq_spanSingleton_mul
IsDedekindDomain.toIsDomain
Ideal.uniqueFactorizationMonoid
finprod_heightOneSpectrum_factorization
finprod_congr
count_ne_zero
finprod_heightOneSpectrum_factorization_principal πŸ“–mathematicalspanSingleton
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
finprod
FractionalIdeal
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
Ideal.uniqueFactorizationMonoid
Ideal.span
Set
Set.instSingletonSet
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
IsLocalization.mk'
Semifield.toCommSemiring
Field.toSemifield
IsLocalization.exists_mk'_eq
MonoidWithZero.toMulZeroOneClass
β€”IsLocalization.exists_mk'_eq
Ideal.uniqueFactorizationMonoid
spanSingleton_zero
zero_div
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.mk'_eq_div
finprod_heightOneSpectrum_factorization_principal_fraction
finprod_heightOneSpectrum_factorization_principal_fraction πŸ“–mathematicalβ€”finprod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
semifield
coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
Ideal.uniqueFactorizationMonoid
Ideal.span
Set
Set.instSingletonSet
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
spanSingleton
IsLocalization.mk'
Semifield.toCommSemiring
Field.toSemifield
β€”map_ne_zero_of_mem_nonZeroDivisors
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.injective
spanSingleton_ne_zero_iff
IsFractionRing.mk'_eq_div
div_eq_zero_iff
map_ne_zero_iff
coeIdeal_span_singleton
spanSingleton_mul_spanSingleton
div_eq_mul_inv
mul_comm
finprod_heightOneSpectrum_factorization
zero_divMod πŸ“–mathematicalβ€”divMod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”instCanonicallyOrderedAdd

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
finite_factors πŸ“–mathematicalβ€”Set.Finite
IsDedekindDomain.HeightOneSpectrum
setOf
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”IsScalarTower.right
Set.finite_coe_iff
Set.coe_setOf
Finite.of_injective
Finite.of_fintype
uniqueFactorizationMonoid
Finite.of_subsingleton
Unique.instSubsingleton
Preorder.subsingleton_hom
Subtype.coe_injective
IsDedekindDomain.HeightOneSpectrum.ext
finite_mulSupport πŸ“–mathematicalβ€”Set.Finite
IsDedekindDomain.HeightOneSpectrum
Function.mulSupport
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.one
Semiring.toModule
IsDedekindDomain.HeightOneSpectrum.maxPowDividing
β€”Set.Finite.subset
uniqueFactorizationMonoid
Filter.eventually_cofinite
Associates.finite_factors
IsDedekindDomain.HeightOneSpectrum.maxPowDividing.eq_1
pow_zero
finite_mulSupport_coe πŸ“–mathematicalβ€”Set.Finite
IsDedekindDomain.HeightOneSpectrum
Function.mulSupport
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionalIdeal.instOne
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
FractionalIdeal.semifield
FractionalIdeal.coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
uniqueFactorizationMonoid
β€”uniqueFactorizationMonoid
Function.mulSupport.eq_1
zpow_natCast
IsScalarTower.right
finite_mulSupport
finite_mulSupport_inv πŸ“–mathematicalβ€”Set.Finite
IsDedekindDomain.HeightOneSpectrum
Function.mulSupport
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionalIdeal.instOne
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
FractionalIdeal.semifield
FractionalIdeal.coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
uniqueFactorizationMonoid
β€”uniqueFactorizationMonoid
Function.mulSupport.eq_1
zpow_neg
finite_mulSupport_coe
finprod_count πŸ“–mathematicalβ€”Associates.count
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.factors
uniqueFactorizationMonoid
finprod
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
IsDedekindDomain.HeightOneSpectrum.maxPowDividing
β€”Associates.finprod_ne_zero
IsDedekindDomain.HeightOneSpectrum.associates_irreducible
finprod_mem_dvd
finite_mulSupport
IsScalarTower.right
uniqueFactorizationMonoid
finprod_not_dvd
Associates.prime_pow_dvd_iff_le
Associates.mk_pow
not_le
finprod_heightOneSpectrum_factorization πŸ“–mathematicalβ€”finprod
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
IsDedekindDomain.HeightOneSpectrum.maxPowDividing
β€”associated_iff_eq
Unique.instSubsingleton
Associates.mk_eq_mk_iff_associated
Associates.eq_of_eq_counts
uniqueFactorizationMonoid
Associates.finprod_ne_zero
Associates.mk_ne_zero
Associates.exists_rep
finprod_count
isPrime_of_prime
irreducible_iff_prime
isCancelMulZero
UniqueFactorizationMonoid.instDecompositionMonoid
Irreducible.ne_zero
finprod_heightOneSpectrum_factorization_coe πŸ“–mathematicalβ€”finprod
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
FractionalIdeal.commSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
FractionalIdeal.semifield
FractionalIdeal.coeIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
Ideal
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
uniqueFactorizationMonoid
β€”uniqueFactorizationMonoid
finprod_heightOneSpectrum_factorization
FractionalIdeal.coeIdeal_finprod
le_refl
IsScalarTower.right
FractionalIdeal.coeIdeal_pow
zpow_natCast
finprod_not_dvd πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.instPowNat
IsDedekindDomain.HeightOneSpectrum.asIdeal
Associates.count
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Associated.setoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Irreducible
Associates
Associates.instCommMonoidWithZero
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Associates.factors
uniqueFactorizationMonoid
finprod
IsDedekindDomain.HeightOneSpectrum
CommSemiring.toCommMonoid
IsDedekindDomain.HeightOneSpectrum.maxPowDividing
β€”finite_mulSupport
pow_ne_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
uniqueFactorizationMonoid
IsDedekindDomain.HeightOneSpectrum.ne_bot
IsScalarTower.right
mul_finprod_cond_ne
pow_add
pow_one
finprod_cond_ne
prime_of_isPrime
IsDedekindDomain.HeightOneSpectrum.isPrime
Prime.exists_mem_finset_dvd
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
isCancelMulZero
Prime.dvd_of_dvd_pow
Finset.mem_erase
IsDedekindDomain.HeightOneSpectrum.ext
associated_iff_eq
Unique.instSubsingleton
Prime.dvd_prime_iff_associated
map_algebraMap_eq_finset_prod_pow πŸ“–mathematicalβ€”map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Finset.prod
Ideal
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Set.toFinset
primesOver
instFintypeElemIdealPrimesOver
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
ramificationIdx
β€”map_ne_bot_of_ne_bot
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsScalarTower.right
finprod_heightOneSpectrum_factorization
finite_factors
finprod_eq_finset_prod_of_mulSupport_subset
Set.coe_toFinset
uniqueFactorizationMonoid
one_eq_top
IsScalarTower.left
IsPrime.ne_top
IsDedekindDomain.HeightOneSpectrum.isPrime
Associates.count_ne_zero_iff_dvd
IsDedekindDomain.HeightOneSpectrum.irreducible
Finset.prod_set_coe
Fintype.prod_equiv
Unique.instSubsingleton
IsDedekindDomain.HeightOneSpectrum.maxPowDividing_eq_pow_multiset_count
IsDedekindDomain.ramificationIdx_eq_factors_count
IsDedekindDomain.HeightOneSpectrum.ne_bot
Multiset.count.congr_simp
UniqueFactorizationMonoid.factors_eq_normalizedFactors

IsDedekindDomain

Theorems

NameKindAssumesProvesValidatesDepends On
exists_add_spanSingleton_mul_eq πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
FractionalIdeal.instPartialOrder
FractionalIdeal.instAdd
FractionalIdeal.instMul
FractionalIdeal.spanSingleton
β€”IsScalarTower.right
FractionalIdeal.coeIdeal_le_coeIdeal
FractionalIdeal.coeIdeal_mul
FractionalIdeal.coeIdeal_span_singleton
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
mul_le_mul_right
FractionalIdeal.instMulLeftMono
exists_sup_span_eq
IsScalarTower.left
IsDomain.to_noZeroDivisors
toIsDomain
IsDomain.toNontrivial
Iff.not
FractionalIdeal.num_eq_zero_iff
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
FractionalIdeal.spanSingleton.congr_simp
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsFractionRing.instFaithfulSMul
add_mul
Distrib.rightDistribClass
FractionalIdeal.spanSingleton_mul_spanSingleton
IsUnit.div_mul_cancel
mul_assoc
mul_comm
FractionalIdeal.den_mul_self_eq_num'
mul_right_comm
one_ne_zero
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
mul_add
Distrib.leftDistribClass
mul_inv_cancel_leftβ‚€
exists_eq_span_pair πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
Set
Set.instInsert
Set.instSingletonSet
β€”exists_sup_span_eq
Ideal.span_singleton_le_iff_mem
Set.union_singleton
Set.pair_comm
exists_sup_span_eq πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Ideal.span
Set
Set.instSingletonSet
β€”IsScalarTower.right
Ideal.dvd_iff_le
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
toIsDomain
Ideal.finite_factors
mul_one
Finset.prod_eq_mul_prod_diff_singleton
mul_assoc
mul_right_comm
mul_lt_mul_of_pos_left
instPosMulStrictMonoIdeal
Ideal.one_eq_top
lt_top_iff_ne_top
Ideal.IsPrime.ne_top
HeightOneSpectrum.isPrime
Ideal.zero_eq_bot
bot_lt_iff_ne_bot
mul_ne_zero_iff
Finset.prod_ne_zero_iff
Ideal.instNontrivial
IsDomain.toNontrivial
HeightOneSpectrum.ne_bot
Ideal.span_singleton_le_iff_mem
sum_mem
Submodule.addSubmonoidClass
Ideal.mul_le_right
Ideal.instIsTwoSided_1
Ideal.exists_le_maximal
Ideal.IsMaximal.isPrime
Set.Finite.toFinset.congr_simp
LE.le.trans
le_sup_left
Ideal.mul_mono_right
le_sup_right
Eq.trans_le
Ideal.mem_span_singleton_self
Ideal.prod_le_inf
Finset.inf_le
Finset.mem_singleton
Finset.mem_sdiff
inf_prime_pow_eq_prod
HeightOneSpectrum.prime
HeightOneSpectrum.ext
pow_one
Finset.prod_congr
Finset.inf_eq_iInf
iInf_subtype'
Ideal.mul_iInf
Ideal.mem_iInf
Finset.sum_eq_add_sum_diff_singleton
add_sub_cancel_right
sub_mem
Submodule.addSubgroupClass
Nontrivial.to_nonempty
SetLike.exists_of_lt
instIsConcreteLE
Function.sometimes_spec
Ideal.add_eq_sup
mul_add
Distrib.leftDistribClass
IsScalarTower.left
Ideal.mul_top

IsDedekindDomain.HeightOneSpectrum

Definitions

NameCategoryTheorems
maxPowDividing πŸ“–CompOp
6 mathmath: Ideal.finite_mulSupport, Ideal.finprod_count, maxPowDividing_eq_pow_multiset_count, embedding_mul_absNorm, Ideal.finprod_not_dvd, Ideal.finprod_heightOneSpectrum_factorization

Theorems

NameKindAssumesProvesValidatesDepends On
maxPowDividing_eq_pow_multiset_count πŸ“–mathematicalβ€”maxPowDividing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
asIdeal
Multiset.count
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
β€”IsScalarTower.right
Ideal.uniqueFactorizationMonoid
maxPowDividing.eq_1
irreducible
Associates.count_some
Multiset.count_map_eq_count'
Subtype.val_injective
Associates.map_subtype_coe_factors'
Unique.instSubsingleton
UniqueFactorizationMonoid.factors_eq_normalizedFactors
Associates.mk_injective

---

← Back to Index