๐ Source: Mathlib/RingTheory/DedekindDomain/GaussLemma.lean
contentIdeal_eq_top_iff_forall_gaussNorm_eq_one
gaussNorm_intAdicAbv_le_one
gaussNorm_lt_one_iff_contentIdeal_le
isPrimitive_iff_forall_gaussNorm_eq_one
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
contentIdeal
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
gaussNorm
AbsoluteValue
Real
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
IsDedekindDomain.HeightOneSpectrum.intAdicAbv
Real.instOne
IsDedekindDomain.HeightOneSpectrum.ideal_ne_top_iff_exists
Real.instLE
gaussNorm_zero
Real.instZeroLEOneClass
Finset.sup'_congr
one_pow
mul_one
Real.instLT
Preorder.toLE
Submodule.instPartialOrder
IsDedekindDomain.HeightOneSpectrum.asIdeal
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
contentIdeal_zero
IsDedekindDomain.HeightOneSpectrum.intAdicAbv_lt_one_iff
Mathlib.Tactic.Contrapose.contraposeโ
Mathlib.Tactic.Push.not_forall_eq
Finset.le_sup'_of_le
Finset.sup'_lt_iff
coeff_mem_coeffs
mem_support_iff
IsPrimitive
IsPrincipalIdealRing.isDedekindDomain
isPrimitive_iff_contentIdeal_eq_top
IsBezout.of_isPrincipalIdealRing
---
โ Back to Index