Documentation Verification Report

GaussLemma

๐Ÿ“ Source: Mathlib/RingTheory/DedekindDomain/GaussLemma.lean

Statistics

MetricCount
Definitions0
TheoremscontentIdeal_eq_top_iff_forall_gaussNorm_eq_one, gaussNorm_intAdicAbv_le_one, gaussNorm_lt_one_iff_contentIdeal_le, isPrimitive_iff_forall_gaussNorm_eq_one
4
Total4

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
contentIdeal_eq_top_iff_forall_gaussNorm_eq_one ๐Ÿ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
contentIdeal
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
gaussNorm
AbsoluteValue
Real
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
IsDedekindDomain.HeightOneSpectrum.intAdicAbv
Real.instOne
โ€”IsDedekindDomain.HeightOneSpectrum.ideal_ne_top_iff_exists
gaussNorm_intAdicAbv_le_one ๐Ÿ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
Real
Real.instLE
gaussNorm
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
IsDedekindDomain.HeightOneSpectrum.intAdicAbv
Real.instOne
โ€”gaussNorm_zero
Real.instZeroLEOneClass
Finset.sup'_congr
one_pow
mul_one
gaussNorm_lt_one_iff_contentIdeal_le ๐Ÿ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
Real
Real.instLT
gaussNorm
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
IsDedekindDomain.HeightOneSpectrum.intAdicAbv
Real.instOne
Ideal
Preorder.toLE
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
contentIdeal
IsDedekindDomain.HeightOneSpectrum.asIdeal
โ€”gaussNorm_zero
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
contentIdeal_zero
Finset.sup'_congr
one_pow
mul_one
IsDedekindDomain.HeightOneSpectrum.intAdicAbv_lt_one_iff
Mathlib.Tactic.Contrapose.contraposeโ‚
Mathlib.Tactic.Push.not_forall_eq
Finset.le_sup'_of_le
Finset.sup'_lt_iff
coeff_mem_coeffs
mem_support_iff
isPrimitive_iff_forall_gaussNorm_eq_one ๐Ÿ“–mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
IsPrimitive
gaussNorm
AbsoluteValue
Real
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
IsDedekindDomain.HeightOneSpectrum.intAdicAbv
IsPrincipalIdealRing.isDedekindDomain
Real.instOne
โ€”IsPrincipalIdealRing.isDedekindDomain
isPrimitive_iff_contentIdeal_eq_top
IsBezout.of_isPrincipalIdealRing
contentIdeal_eq_top_iff_forall_gaussNorm_eq_one

---

โ† Back to Index