Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/RingTheory/DedekindDomain/Ideal/Basic.lean

Statistics

MetricCount
Definitionssemifield, normalizationMonoid, IsDedekindDomainInv, commGroupWithZero
4
TheoremsadjoinIntegral_eq_one_of_isUnit, coe_ideal_mul_inv, div_eq_mul_inv, instMulPosReflectLENonZeroDivisors, instMulPosStrictMonoNonZeroDivisors, instPosMulReflectLEIdealOfIsDedekindDomain, instPosMulReflectLENonZeroDivisors, instPosMulStrictMonoNonZeroDivisors, mul_inv_cancel, mul_inv_cancel_of_le_one, mul_left_le_iff, mul_left_strictMono, mul_right_le_iff, mul_right_strictMono, not_inv_le_one_of_ne_bot, dvdNotUnit_iff_lt, dvd_iff_le, isCancelMulZero, isDomain, liesOver_iff_dvd_map, uniqueFactorizationMonoid, dimensionLEOne, integrallyClosed, inv_mul_eq_one, isDedekindDomain, isNoetherianRing, mul_inv_eq_one, exists_multiset_prod_cons_le_and_prod_not_le, instMulPosStrictMonoIdeal, instPosMulStrictMonoIdeal, instWfDvdMonoidIdeal, isDedekindDomainInv_iff, isDedekindDomain_iff_isDedekindDomainInv, one_mem_inv_coe_ideal
34
Total38

FractionalIdeal

Definitions

NameCategoryTheorems
semifield ๐Ÿ“–CompOp
37 mathmath: finprod_heightOneSpectrum_factorization_principal, ClassGroup.mk0_integralRep, NumberField.hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, NumberField.mixedEmbedding.mem_idealLattice, count_finsuppProd, count_finprod_coprime, finprod_heightOneSpectrum_factorization, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, count_finprod, NumberField.det_basisOfFractionalIdeal_eq_absNorm, NumberField.mixedEmbedding.span_idealLatticeBasis, canonicalEquiv_mk0, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt, ClassGroup.mk_mk0, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, Ideal.finite_mulSupport_coe, NumberField.fractionalIdeal_rank, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, count_zpow_self, count_neg_zpow, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', NumberField.mem_span_basisOfFractionalIdeal, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, count_zpow, map_canonicalEquiv_mk0, Ideal.finprod_heightOneSpectrum_factorization_coe, NumberField.basisOfFractionalIdeal_apply, ClassGroup.equiv_mk0, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, finprod_heightOneSpectrum_factorization_principal_fraction, Ideal.finite_mulSupport_inv, coe_mk0, finprod_heightOneSpectrum_factorization'

Theorems

NameKindAssumesProvesValidatesDepends On
adjoinIntegral_eq_one_of_isUnit ๐Ÿ“–mathematicalIsIntegral
DivisionRing.toRing
Field.toDivisionRing
IsUnit
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidWithZero.toMonoid
commSemiring
adjoinIntegral
instOneโ€”coeToSubmodule_injective
IsScalarTower.right
coe_mul
Subalgebra.isIdempotentElem_toSubmodule
mul_assoc
mul_inv_cancel_iff_isUnit
mul_one
coe_ideal_mul_inv ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
coeIdeal
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
instOne
โ€”mul_inv_cancel_of_le_one
IsDedekindDomain.toIsDomain
inv_zero'
zero_le
mem_integralClosure_iff_mem_fg
mem_inv_iff
coeIdeal_ne_zero
mul_assoc
mul_comm
mul_mem_mul
isNoetherian_submodule
isNoetherian
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
AlgHom.mem_range
Polynomial.aeval_eq_sum_range
Submodule.sum_mem
Submodule.smul_mem
pow_zero
one_mem_inv_coe_ideal
pow_succ'
Polynomial.aeval_X
mem_one_iff
Set.mem_range
Algebra.mem_bot
IsIntegrallyClosed.integralClosure_eq_bot
IsDedekindRing.toIsIntegralClosure
div_eq_mul_inv ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instDivNonZeroDivisors
IsDedekindDomain.toIsDomain
instMul
instInvNonZeroDivisors
โ€”div_eq_mul_inv
instMulPosReflectLENonZeroDivisors ๐Ÿ“–mathematicalโ€”MulPosReflectLE
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instZero
PartialOrder.toPreorder
instPartialOrder
โ€”IsDedekindDomain.toIsDomain
mul_inv_cancel_rightโ‚€
LT.lt.ne'
mul_left_mono
instMulRightMono
instMulPosStrictMonoNonZeroDivisors ๐Ÿ“–mathematicalโ€”MulPosStrictMono
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instZero
PartialOrder.toPreorder
instPartialOrder
โ€”MulPosMono.toMulPosStrictMono
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
IsOrderedRing.toMulPosMono
instIsOrderedRing
instPosMulReflectLEIdealOfIsDedekindDomain ๐Ÿ“–mathematicalโ€”PosMulReflectLE
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PartialOrder.toPreorder
Submodule.instPartialOrder
โ€”IsScalarTower.right
coeIdeal_le_coeIdeal
Localization.isLocalization
mul_le_mul_iff_rightโ‚€
IsOrderedRing.toPosMulMono
IsDedekindDomain.toIsDomain
instIsOrderedRing
instPosMulReflectLENonZeroDivisors
instCanonicallyOrderedAdd
LT.lt.ne'
coeIdeal_mul
instPosMulReflectLENonZeroDivisors ๐Ÿ“–mathematicalโ€”PosMulReflectLE
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instZero
PartialOrder.toPreorder
instPartialOrder
โ€”IsDedekindDomain.toIsDomain
inv_mul_cancel_leftโ‚€
LT.lt.ne'
mul_right_mono
instMulLeftMono
instPosMulStrictMonoNonZeroDivisors ๐Ÿ“–mathematicalโ€”PosMulStrictMono
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instZero
PartialOrder.toPreorder
instPartialOrder
โ€”PosMulMono.toPosMulStrictMono
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
IsOrderedRing.toPosMulMono
instIsOrderedRing
mul_inv_cancel ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
instOne
โ€”mul_inv_cancelโ‚€
mul_inv_cancel_of_le_one ๐Ÿ“–โ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
instMul
coeIdeal
instOne
โ€”โ€”IsDedekindDomain.toIsDomain
le_one_iff_exists_coeIdeal
mul_one_div_le_one
eq_bot_iff
coeIdeal_le_coeIdeal
coe_ideal_le_self_mul_inv
coeIdeal_top
not_inv_le_one_of_ne_bot
mul_left_le_iff ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
โ€”mul_le_mul_iff_rightโ‚€
IsOrderedRing.toPosMulMono
instIsOrderedRing
instPosMulReflectLENonZeroDivisors
pos_iff_ne_zero
instCanonicallyOrderedAdd
mul_left_strictMono ๐Ÿ“–mathematicalโ€”StrictMono
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
PartialOrder.toPreorder
instPartialOrder
instMul
โ€”mul_lt_mul_of_pos_right
instMulPosStrictMonoNonZeroDivisors
pos_iff_ne_zero
instCanonicallyOrderedAdd
mul_right_le_iff ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
โ€”mul_le_mul_iff_leftโ‚€
IsOrderedRing.toMulPosMono
instIsOrderedRing
instMulPosReflectLENonZeroDivisors
pos_iff_ne_zero
instCanonicallyOrderedAdd
mul_right_strictMono ๐Ÿ“–mathematicalโ€”StrictMono
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
PartialOrder.toPreorder
instPartialOrder
instMul
โ€”mul_lt_mul_of_pos_left
instPosMulStrictMonoNonZeroDivisors
pos_iff_ne_zero
instCanonicallyOrderedAdd
not_inv_le_one_of_ne_bot ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
coeIdeal
instOne
โ€”IsSimpleOrder.eq_bot_or_eq_top
Ideal.isSimpleOrder
IsDedekindDomain.toIsDomain
Ideal.bot_lt_of_maximal
IsDomain.toNontrivial
Submodule.nonzero_mem_of_bot_lt
Subtype.coe_injective
Ideal.span_singleton_eq_bot
Ideal.span_singleton_le_iff_mem
exists_multiset_prod_cons_le_and_prod_not_le
SetLike.not_le_iff_exists
instIsConcreteLE
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
IsFractionRing.injective
Set.not_subset
mem_inv_iff
coeIdeal_ne_zero
LT.lt.ne'
mem_coeIdeal
mul_comm
mul_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Multiset.prod_cons
Submodule.smul_mem_smul
IsScalarTower.right
Ideal.mem_span_singleton'
mul_inv_cancelโ‚€
mul_one
coe_mem_one
mem_one_iff
eq_div_iff_mul_eq
div_eq_mul_inv
Ideal.exists_le_maximal
le_trans
inv_anti_mono
Ideal.IsMaximal.ne_top

Ideal

Definitions

NameCategoryTheorems
normalizationMonoid ๐Ÿ“–CompOp
21 mathmath: prod_normalizedFactors_eq_self, count_normalizedFactors_eq, IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count, normalizedFactorsEquivOfQuotEquiv_symm, IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime, count_span_normalizedFactors_eq_of_normUnit, irreducible_pow_sup, mem_normalizedFactors_iff, count_le_of_ideal_ge, mem_primesOver_iff_mem_normalizedFactors, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity, count_span_normalizedFactors_eq, IsDedekindDomain.HeightOneSpectrum.maxPowDividing_eq_pow_multiset_count, eq_prime_pow_mul_coprime, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, count_associates_factors_eq, sup_eq_prod_inf_factors, singleton_span_mem_normalizedFactors_of_mem_normalizedFactors, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_emultiplicity, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span

Theorems

NameKindAssumesProvesValidatesDepends On
dvdNotUnit_iff_lt ๐Ÿ“–mathematicalโ€”DvdNotUnit
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
โ€”lt_of_le_of_ne
IsScalarTower.right
dvd_iff_le
mul_left_cancelโ‚€
IsCancelMulZero.toIsLeftCancelMulZero
isCancelMulZero
mul_one
isUnit_one
dvdNotUnit_of_dvd_of_not_dvd
le_of_lt
not_le_of_gt
dvd_iff_le ๐Ÿ“–mathematicalโ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”IsScalarTower.right
le_of_dvd
eq_bot_iff
dvd_refl
IsDedekindDomain.toIsDomain
FractionalIdeal.coeIdeal_ne_zero
Localization.isLocalization
inv_mul_cancelโ‚€
mul_le_mul_right
FractionalIdeal.instMulLeftMono
FractionalIdeal.le_one_iff_exists_coeIdeal
FractionalIdeal.coeIdeal_injective
FractionalIdeal.coeIdeal_mul
mul_assoc
mul_inv_cancelโ‚€
one_mul
isCancelMulZero ๐Ÿ“–mathematicalโ€”IsCancelMulZero
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”Function.Injective.isCancelMulZero
IsScalarTower.right
FractionalIdeal.coeIdeal_injective
IsDedekindDomain.toIsDomain
Localization.isLocalization
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsDomain.toIsCancelMulZero
instIsDomain
isDomain ๐Ÿ“–mathematicalโ€”IsDomain
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
โ€”isCancelMulZero
instNontrivial
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
liesOver_iff_dvd_map ๐Ÿ“–mathematicalโ€”LiesOver
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
โ€”IsScalarTower.right
liesOver_iff
dvd_iff_le
RingHom.instRingHomClass
under_def
map_le_iff_le_comap
IsCoatom.le_iff_eq
isMaximal_def
comap_ne_top
uniqueFactorizationMonoid ๐Ÿ“–mathematicalโ€”UniqueFactorizationMonoid
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
โ€”isCancelMulZero
instWfDvdMonoidIdeal
Irreducible.ne_zero
Irreducible.not_isUnit
isUnit_iff
dvdNotUnit_iff_lt
Irreducible.isUnit_or_isUnit
IsScalarTower.right
dvd_iff_le
SetLike.le_def
instIsConcreteLE
Mathlib.Tactic.Contrapose.contraposeโ‚
Mathlib.Tactic.Push.not_forall_eq
mul_mem_mul
IsPrime.mem_or_mem
IsMaximal.isPrime
Prime.irreducible

IsDedekindDomainInv

Definitions

NameCategoryTheorems
commGroupWithZero ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
dimensionLEOne ๐Ÿ“–mathematicalIsDedekindDomainInvRing.DimensionLEOneโ€”Localization.isLocalization
Ideal.isMaximal_def
Ideal.IsPrime.ne_top
FractionalIdeal.coeIdeal_ne_zero
LT.lt.ne_bot
inv_mul_cancelโ‚€
mul_le_mul_right
FractionalIdeal.instMulLeftMono
le_of_lt
FractionalIdeal.mem_coeIdeal
SetLike.exists_of_lt
instIsConcreteLE
FractionalIdeal.mul_mem_mul
FractionalIdeal.mem_coeIdeal_of_mem
one_mul
mul_inv_cancelโ‚€
mul_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Ideal.IsPrime.mem_or_mem
IsFractionRing.injective
eq_top_iff
FractionalIdeal.coeIdeal_le_coeIdeal
FractionalIdeal.coeIdeal_top
mul_inv_cancel_leftโ‚€
mul_le_mul_left
FractionalIdeal.instMulRightMono
integrallyClosed ๐Ÿ“–mathematicalIsDedekindDomainInvIsIntegrallyClosedโ€”Localization.isLocalization
isIntegrallyClosed_iff
Set.mem_range
Algebra.mem_bot
Subalgebra.mem_toSubmodule
Algebra.toSubmodule_bot
Submodule.one_eq_span
FractionalIdeal.coe_spanSingleton
FractionalIdeal.spanSingleton_one
FractionalIdeal.adjoinIntegral_eq_one_of_isUnit
Ne.isUnit
one_ne_zero
NeZero.one
FractionRing.instNontrivial
IsDomain.toNontrivial
FractionalIdeal.eq_zero_iff
Subalgebra.one_mem
FractionalIdeal.mem_adjoinIntegral_self
inv_mul_eq_one ๐Ÿ“–mathematicalIsDedekindDomainInvFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionalIdeal.instMul
FractionalIdeal.instInvNonZeroDivisors
FractionalIdeal.instOne
โ€”inv_mul_cancelโ‚€
isDedekindDomain ๐Ÿ“–mathematicalIsDedekindDomainInvIsDedekindDomainโ€”isNoetherianRing
dimensionLEOne
integrallyClosed
isNoetherianRing ๐Ÿ“–mathematicalIsDedekindDomainInvIsNoetherianRing
CommSemiring.toSemiring
CommRing.toCommSemiring
โ€”Localization.isLocalization
isNoetherianRing_iff
Submodule.fg_bot
FractionalIdeal.coeIdeal_ne_zero
Ideal.fg_of_isUnit
IsFractionRing.injective
Ne.isUnit
mul_inv_eq_one ๐Ÿ“–mathematicalIsDedekindDomainInvFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionalIdeal.instMul
FractionalIdeal.instInvNonZeroDivisors
FractionalIdeal.instOne
โ€”mul_inv_cancelโ‚€

(root)

Definitions

NameCategoryTheorems
IsDedekindDomainInv ๐Ÿ“–MathDef
2 mathmath: isDedekindDomain_iff_isDedekindDomainInv, isDedekindDomainInv_iff

Theorems

NameKindAssumesProvesValidatesDepends On
exists_multiset_prod_cons_le_and_prod_not_le ๐Ÿ“–mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Multiset.prod
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Multiset.cons
Multiset.map
PrimeSpectrum
PrimeSpectrum.asIdeal
โ€”PrimeSpectrum.exists_primeSpectrum_prod_le_and_ne_bot_of_domain
IsDedekindDomain.toIsDomain
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
WellFounded.has_min
wellFounded_lt
Multiset.instWellFoundedLT
Ideal.IsPrime.multiset_prod_le
Ideal.IsMaximal.isPrime
LE.le.trans
Multiset.mem_map
Multiset.map_erase
PrimeSpectrum.ext
IsScalarTower.left
Ideal.mul_eq_bot
IsDomain.to_noZeroDivisors
Multiset.prod_cons
Multiset.cons_erase
Ideal.IsMaximal.eq_of_le
Ideal.IsPrime.isMaximal
IsDedekindRing.toDimensionLEOne
PrimeSpectrum.isPrime
Ideal.IsMaximal.ne_top
Multiset.erase_lt
instMulPosStrictMonoIdeal ๐Ÿ“–mathematicalโ€”MulPosStrictMono
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PartialOrder.toPreorder
Submodule.instPartialOrder
โ€”MulPosMono.toMulPosStrictMono
IsCancelMulZero.toIsRightCancelMulZero
Ideal.isCancelMulZero
IsOrderedRing.toMulPosMono
Submodule.instIsOrderedRing
instPosMulStrictMonoIdeal ๐Ÿ“–mathematicalโ€”PosMulStrictMono
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PartialOrder.toPreorder
Submodule.instPartialOrder
โ€”PosMulMono.toPosMulStrictMono
IsCancelMulZero.toIsLeftCancelMulZero
Ideal.isCancelMulZero
IsOrderedRing.toPosMulMono
Submodule.instIsOrderedRing
instWfDvdMonoidIdeal ๐Ÿ“–mathematicalโ€”WfDvdMonoid
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
โ€”wellFoundedGT
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
Ideal.dvdNotUnit_iff_lt
IsWellFounded.wf
isDedekindDomainInv_iff ๐Ÿ“–mathematicalโ€”IsDedekindDomainInv
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionalIdeal.instMul
FractionalIdeal.instInvNonZeroDivisors
FractionalIdeal.instOne
โ€”Equiv.forall_congr
Equiv.apply_eq_iff_eq
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
FractionalIdeal.map_mul
FractionalIdeal.map_inv
FractionalIdeal.map_one
Localization.isLocalization
IsDomain.toNontrivial
isDedekindDomain_iff_isDedekindDomainInv ๐Ÿ“–mathematicalโ€”IsDedekindDomain
IsDedekindDomainInv
โ€”mul_inv_cancelโ‚€
Localization.isLocalization
IsDedekindDomainInv.isDedekindDomain
one_mem_inv_coe_ideal ๐Ÿ“–mathematicalโ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
FractionalIdeal.instSetLike
FractionalIdeal.instInvNonZeroDivisors
FractionalIdeal.coeIdeal
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
โ€”FractionalIdeal.mem_inv_iff
FractionalIdeal.coeIdeal_ne_zero
one_mul
FractionalIdeal.coeIdeal_le_one

---

โ† Back to Index