Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/RingTheory/DedekindDomain/Ideal/Lemmas.lean

Statistics

MetricCount
DefinitionsinstNormalizedGCDMonoid, asIdeal, equivMaximalSpectrum, equivPrimesOver, ofPrime, quotientEquivPiFactors, quotientEquivPiOfFinsetProdEq, quotientEquivPiOfProdEq, idealFactorsEquivOfQuotEquiv, idealFactorsFunOfQuotHom, instFintypeElemIdealPrimesOver, normalizedFactorsEquivOfQuotEquiv, normalizedFactorsEquivSpanNormalizedFactors, primesOverFinset
14
Theoremsle_singleton_iff, exists_notMem_one_of_ne_bot, inf_mul, inv_le_comm, inv_le_inv_iff, le_inv_comm, mul_inf, sup_mul_inf, mem_pow_mul, mul_mem_pow, count_associates_eq, count_associates_eq', count_normalizedFactors_eq, dvd_span_singleton, eq_prime_pow_mul_coprime, eq_prime_pow_of_succ_lt_of_le, exist_integer_multiples_notMem, exists_mem_pow_notMem_pow_succ, factors_span_eq, gcd_eq_sup, iInf_mul, inf_mul, isCoprime_iff_gcd, isPrime_iff_bot_or_prime, isPrime_of_prime, lcm_eq_inf, le_mul_of_no_prime_factors, mem_normalizedFactors_iff, mem_primesOver_iff_mem_normalizedFactors, mul_iInf, mul_inf, pow_lt_self, pow_right_strictAnti, pow_succ_lt_pow, prime_generator_of_prime, prime_iff_isPrime, prime_of_isPrime, prime_of_mem_primesOver, prime_span_singleton_iff, squarefree_span_singleton, sup_mul_inf, associates_irreducible, equivPrimesOver_apply, ext, ext_iff, iInf_localization_eq_bot, ideal_ne_top_iff_exists, irreducible, isMaximal, isPrime, ne_bot, ofPrime_asIdeal, prime, exists_forall_sub_mem_ideal, exists_representative_mod_finset, inf_prime_pow_eq_prod, quotientEquivPiFactors_mk, primesOverFinset_eq, prime_le_prime_iff_eq, coe_primesOverFinset, count_associates_factors_eq, count_le_of_ideal_ge, count_span_normalizedFactors_eq, count_span_normalizedFactors_eq_of_normUnit, emultiplicity_eq_emultiplicity_span, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_emultiplicity, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity, idealFactorsEquivOfQuotEquiv_is_dvd_iso, idealFactorsEquivOfQuotEquiv_mem_normalizedFactors_of_mem_normalizedFactors, idealFactorsEquivOfQuotEquiv_symm, idealFactorsFunOfQuotHom_coe_coe, idealFactorsFunOfQuotHom_comp, idealFactorsFunOfQuotHom_id, irreducible_pow_sup, irreducible_pow_sup_of_ge, irreducible_pow_sup_of_le, map_prime_of_equiv, mem_primesOverFinset_iff, normalizedFactorsEquivOfQuotEquiv_emultiplicity_eq_emultiplicity, normalizedFactorsEquivOfQuotEquiv_symm, one_le_primesOver_ncard, primesOver_finite, primesOver_ncard_ne_zero, prod_normalizedFactors_eq_self, singleton_span_mem_normalizedFactors_of_mem_normalizedFactors, span_singleton_dvd_span_singleton_iff_dvd, sup_eq_prod_inf_factors
87
Total101

Associates

Theorems

NameKindAssumesProvesValidatesDepends On
le_singleton_iff πŸ“–mathematicalβ€”Associates
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Preorder.toLE
instPreorder
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Monoid.toNatPow
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
CommSemiring.toCommMonoidWithZero
Ideal.span
Set
Set.instSingletonSet
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
β€”IsScalarTower.right

FractionalIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
exists_notMem_one_of_ne_bot πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
instSetLike
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
coeIdeal
instOne
β€”IsDedekindDomain.toIsDomain
Set.not_subset
not_inv_le_one_of_ne_bot
inf_mul πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instMin
β€”inf_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
instMulPosReflectLENonZeroDivisors
zero_le
inv_le_comm πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
β€”IsDedekindDomain.toIsDomain
inv_inv
le_inv_comm
inv_ne_zero
inv_le_inv_iff πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
β€”IsDedekindDomain.toIsDomain
le_inv_comm
inv_ne_zero
inv_inv
le_inv_comm πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisors
IsDedekindDomain.toIsDomain
β€”IsDedekindDomain.toIsDomain
inv_eq
le_div_iff_mul_le
mul_comm
mul_inf πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instMin
β€”mul_infβ‚€
PosMulReflectLE.toPosMulReflectLT
instPosMulReflectLENonZeroDivisors
zero_le
sup_mul_inf πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
instMin
instMax
β€”mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
spanSingleton.congr_simp
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsDomain.to_noZeroDivisors
IsFractionRing.instFaithfulSMul
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsScalarTower.right
Ideal.sup_mul_inf
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
mul_infβ‚€
PosMulReflectLE.toPosMulReflectLT
instPosMulReflectLENonZeroDivisors
zero_le
mul_add
Distrib.leftDistribClass
mul_left_comm
coeIdeal_mul
coeIdeal_sup
coeIdeal_span_singleton
coeIdeal_inf
Module.IsTorsionFree.to_faithfulSMul
IsLocalRing.toNontrivial
Field.instIsLocalRing
FaithfulSMul.to_isTorsionFree

Ideal

Definitions

NameCategoryTheorems
instNormalizedGCDMonoid πŸ“–CompOp
3 mathmath: gcd_eq_sup, isCoprime_iff_gcd, lcm_eq_inf

Theorems

NameKindAssumesProvesValidatesDepends On
count_associates_eq πŸ“–mathematicalPrime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Associates.count
Ideal
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
span
Set
Set.instSingletonSet
Associates.factors
uniqueFactorizationMonoid
β€”Prime.ne_zero
uniqueFactorizationMonoid
count_associates_factors_eq
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
isReduced_of_noZeroDivisors
IsDomain.toNontrivial
span_singleton_prime
UniqueFactorizationMonoid.count_normalizedFactors_eq
Prime.irreducible
isCancelMulZero
prime_span_singleton_iff
normalize_eq
span_singleton_pow
instIsTwoSided_1
mul_mem_right
mem_span_singleton_self
pow_add
pow_one
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
pow_ne_zero
count_associates_eq' πŸ“–mathematicalPrime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Associates.count
Ideal
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
span
Set
Set.instSingletonSet
Associates.factors
uniqueFactorizationMonoid
β€”uniqueFactorizationMonoid
count_associates_eq
Mathlib.Tactic.Contrapose.contraposeβ‚„
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
count_normalizedFactors_eq πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Multiset.count
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
normalizationMonoid
uniqueFactorizationMonoid
β€”IsScalarTower.right
UniqueFactorizationMonoid.count_normalizedFactors_eq'
uniqueFactorizationMonoid
Unique.instSubsingleton
Prime.irreducible
isCancelMulZero
isPrime_iff_bot_or_prime
normalize_eq
dvd_iff_le
le_of_dvd
dvd_span_singleton πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
span
Set
Set.instSingletonSet
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.right
dvd_iff_le
span_le
Set.singleton_subset_iff
eq_prime_pow_mul_coprime πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.mul
IsScalarTower.right
Submodule.instPowNat
Multiset.count
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
normalizationMonoid
uniqueFactorizationMonoid
β€”IsScalarTower.right
uniqueFactorizationMonoid
sup_multiset_prod_eq_top
UniqueFactorizationMonoid.prime_of_normalized_factor
Multiset.filter_subset
IsMaximal.coprime_of_ne
IsPrime.isMaximal
IsDedekindRing.toDimensionLEOne
IsDedekindDomain.toIsDedekindRing
isPrime_of_prime
Prime.ne_zero
Multiset.of_mem_filter
prod_normalizedFactors_eq_self
Multiset.filter_add_not
Multiset.prod_add
Multiset.pow_count
eq_prime_pow_of_succ_lt_of_le πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Preorder.toLE
β€”β€”IsScalarTower.right
le_antisymm
prime_of_isPrime
LT.lt.ne'
lt_of_le_of_lt
bot_le
pow_ne_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
dvd_iff_le
uniqueFactorizationMonoid
UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
UniqueFactorizationMonoid.normalizedFactors_pow
UniqueFactorizationMonoid.normalizedFactors_irreducible
Prime.irreducible
isCancelMulZero
Multiset.nsmul_singleton
Multiset.lt_replicate_succ
UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors
dvdNotUnit_iff_lt
exist_integer_multiples_notMem πŸ“–mathematicalFinset
Finset.instMembership
IsLocalization.IsInteger
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
FractionalIdeal.instSetLike
FractionalIdeal.coeIdeal
β€”FractionalIdeal.spanFinset_ne_zero
IsDedekindDomain.toIsDomain
div_eq_mul_inv
mul_lt_of_lt_one_left
FractionalIdeal.instMulPosStrictMonoNonZeroDivisors
FractionalIdeal.instCanonicallyOrderedAdd
FractionalIdeal.coeIdeal_top
strictMono_of_le_iff_le
FractionalIdeal.coeIdeal_le_coeIdeal
lt_top_iff_ne_top
SetLike.lt_iff_le_and_exists
instIsConcreteLE
FractionalIdeal.mem_one_iff
FractionalIdeal.mem_inv_iff
Submodule.subset_span
Set.mem_image_of_mem
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
FractionalIdeal.mem_div_iff_of_ne_zero
Submodule.span_induction
MulZeroClass.mul_zero
Submodule.zero_mem
mul_add
Distrib.leftDistribClass
Submodule.add_mem
mul_smul_comm
Algebra.to_smulCommClass
Submodule.smul_mem
exists_mem_pow_notMem_pow_succ πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”SetLike.exists_of_lt
instIsConcreteLE
IsScalarTower.right
pow_right_strictAnti
factors_span_eq πŸ“–mathematicalβ€”UniqueFactorizationMonoid.factors
Ideal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.semiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Polynomial.commSemiring
Semifield.toCommSemiring
uniqueFactorizationMonoid
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
span
Set
Set.instSingletonSet
Multiset.map
PrincipalIdealRing.to_uniqueFactorizationMonoid
β€”uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
PrincipalIdealRing.to_uniqueFactorizationMonoid
eq_or_ne
Unique.instSubsingleton
UniqueFactorizationMonoid.factors.congr_simp
span_zero
UniqueFactorizationMonoid.factors_eq_normalizedFactors
Multiset.map_congr
UniqueFactorizationMonoid.factors_zero
UniqueFactorizationMonoid.normalizedFactors_zero
Multiset.mem_map
prime_span_singleton_iff
UniqueFactorizationMonoid.prime_of_factor
span_singleton_eq_span_singleton
UniqueFactorizationMonoid.factors_prod
multiset_prod_span_singleton
UniqueFactorizationMonoid.normalizedFactors_prod_of_prime
gcd_eq_sup πŸ“–mathematicalβ€”GCDMonoid.gcd
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
NormalizedGCDMonoid.toGCDMonoid
instNormalizedGCDMonoid
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
β€”β€”
iInf_mul πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
iInf
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.right
mul_comm
mul_iInf
inf_mul πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.right
mul_comm
mul_inf
isCoprime_iff_gcd πŸ“–mathematicalβ€”IsCoprime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
NormalizedGCDMonoid.toGCDMonoid
instNormalizedGCDMonoid
Submodule.one
Semiring.toModule
β€”isCoprime_iff_codisjoint
codisjoint_iff
one_eq_top
gcd_eq_sup
isPrime_iff_bot_or_prime πŸ“–mathematicalβ€”IsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prime
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
β€”prime_of_isPrime
eq_or_ne
isPrime_bot
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsDomain.to_noZeroDivisors
isPrime_of_prime
isPrime_of_prime πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
IsPrimeβ€”Prime.not_unit
one_eq_top
isUnit_one
IsScalarTower.right
Prime.dvd_or_dvd
IsScalarTower.left
instIsTwoSided_1
lcm_eq_inf πŸ“–mathematicalβ€”GCDMonoid.lcm
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
NormalizedGCDMonoid.toGCDMonoid
instNormalizedGCDMonoid
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
le_mul_of_no_prime_factors πŸ“–mathematicalIsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.mul
IsScalarTower.right
Algebra.id
β€”IsScalarTower.right
MulZeroClass.zero_mul
mul_comm
mul_dvd_mul_left
UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors
uniqueFactorizationMonoid
isPrime_of_prime
mem_normalizedFactors_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
normalizationMonoid
uniqueFactorizationMonoid
IsPrime
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”uniqueFactorizationMonoid
IsScalarTower.right
dvd_iff_le
zero_eq_bot
UniqueFactorizationMonoid.mem_normalizedFactors_iff
Unique.instSubsingleton
prime_iff_isPrime
mem_primesOver_iff_mem_normalizedFactors πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
normalizationMonoid
uniqueFactorizationMonoid
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”uniqueFactorizationMonoid
primesOver.eq_1
Set.mem_setOf_eq
mem_normalizedFactors_iff
map_ne_bot_of_ne_bot
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
liesOver_iff
RingHom.instRingHomClass
under_def
map_le_iff_le_comap
le_of_eq
IsCoatom.le_iff_eq
isMaximal_def
comap_ne_top
IsPrime.ne_top
mul_iInf πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
iInf
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.right
Submodule.bot_mul
ciInf_const
LE.le.antisymm
IsScalarTower.left
le_iInf
mul_mono_right
iInf_le
LE.le.trans
mul_le_right
instIsTwoSided_1
dvd_iff_le
le_imp_le_of_le_of_le
mul_le_mul_right
Submodule.instMulLeftMono
mul_le_mul_iff_of_pos_left
IsOrderedRing.toPosMulMono
Submodule.instIsOrderedRing
FractionalIdeal.instPosMulReflectLEIdealOfIsDedekindDomain
bot_lt_iff_ne_bot
le_refl
mul_inf πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.right
inf_eq_iInf
mul_iInf
pow_lt_self πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”IsScalarTower.right
pow_one
pow_right_strictAnti
pow_right_strictAnti πŸ“–mathematicalβ€”StrictAnti
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.instPreorder
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”strictAnti_nat_of_succ_lt
IsScalarTower.right
dvdNotUnit_iff_lt
pow_ne_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
isUnit_iff
pow_succ
pow_succ_lt_pow πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”lt_of_le_of_ne
IsScalarTower.right
pow_le_pow_right
pow_inj_of_not_isUnit
isCancelMulZero
isUnit_iff
IsPrime.ne_top
prime_generator_of_prime πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Submodule.IsPrincipal.generator
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”isPrime_of_prime
Submodule.IsPrincipal.prime_generator_of_isPrime
Prime.ne_zero
prime_iff_isPrime πŸ“–mathematicalβ€”Prime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
IsPrime
β€”isPrime_of_prime
prime_of_isPrime
prime_of_isPrime πŸ“–mathematicalβ€”Prime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
β€”isUnit_iff
IsPrime.ne_top
IsScalarTower.right
IsPrime.mul_le
le_of_dvd
prime_of_mem_primesOver πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
Prime
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
β€”prime_of_isPrime
ne_bot_of_mem_primesOver
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
prime_span_singleton_iff πŸ“–mathematicalβ€”Prime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
span
Set
Set.instSingletonSet
β€”eq_or_ne
Set.singleton_zero
span_zero
zero_eq_bot
not_iff_not
prime_iff_isPrime
span_singleton_prime
squarefree_span_singleton πŸ“–mathematicalβ€”Squarefree
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
span
Set
Set.instSingletonSet
β€”IsScalarTower.right
IsScalarTower.left
span_singleton_mul_span_singleton
instIsTwoSided_1
span_singleton_dvd_span_singleton_iff_dvd
isUnit_iff
eq_top_of_isUnit_mem
IsPrincipalIdealRing.principal
Submodule.IsPrincipal.generator_mem
span_singleton_generator
sup_mul_inf πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”uniqueFactorizationMonoid
gcd_eq_normalize
IsScalarTower.right
dvd_iff_le
sup_le_iff
GCDMonoid.gcd_dvd_left
GCDMonoid.gcd_dvd_right
dvd_gcd_iff
Unique.instSubsingleton
normalize_eq
lcm_eq_normalize
lcm_dvd_iff
le_inf_iff
dvd_lcm_left
dvd_lcm_right
associated_iff_eq
gcd_mul_lcm

Ideal.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
mem_pow_mul πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”IsScalarTower.right
mul_mem_pow
mul_comm
mul_mem_pow πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”IsScalarTower.right
pow_zero
Ideal.one_eq_top
pow_succ
Submodule.mul_bot
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
Prime.pow_dvd_of_dvd_mul_right
Ideal.isCancelMulZero
Ideal.prime_iff_isPrime
mul_comm
IsScalarTower.left
Ideal.instIsTwoSided_1

IsDedekindDomain

Definitions

NameCategoryTheorems
quotientEquivPiFactors πŸ“–CompOp
1 mathmath: quotientEquivPiFactors_mk
quotientEquivPiOfFinsetProdEq πŸ“–CompOpβ€”
quotientEquivPiOfProdEq πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_forall_sub_mem_ideal πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Finset
Finset.instSetLike
β€”IsScalarTower.right
Ideal.instIsTwoSided_1
exists_representative_mod_finset
Ideal.Quotient.eq
exists_representative_mod_finset πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
DFunLike.coe
RingHom
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Finset
SetLike.instMembership
Finset.instSetLike
β€”IsScalarTower.right
Ideal.instIsTwoSided_1
RingEquiv.surjective
Ideal.Quotient.mk_surjective
inf_prime_pow_eq_prod πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Finset.inf
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instOrderTop
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Finset.prod
CommSemiring.toCommMonoid
β€”Finset.induction
IsScalarTower.right
instIsEmptyFalse
Ideal.one_eq_top
Finset.inf_insert
Finset.prod_insert
Finset.mem_insert_of_mem
le_antisymm
Ideal.le_mul_of_no_prime_factors
Ideal.IsPrime.prod_le
Finset.mem_insert_self
Ring.DimensionLeOne.prime_le_prime_iff_eq
IsDedekindRing.toDimensionLEOne
toIsDedekindRing
Ideal.isPrime_of_prime
Prime.ne_zero
Ideal.IsPrime.le_of_pow_le
inf_le_left
inf_le_right
Ideal.mul_le_inf
Ideal.instIsTwoSided_1
quotientEquivPiFactors_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Pi.instMul
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Multiset.count
Distrib.toAdd
Pi.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
quotientEquivPiFactors
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”Ideal.uniqueFactorizationMonoid
IsScalarTower.right
Ideal.instIsTwoSided_1

IsDedekindDomain.HeightOneSpectrum

Definitions

NameCategoryTheorems
asIdeal πŸ“–CompOp
61 mathmath: equivPrimesOver_apply, FractionalIdeal.finprod_heightOneSpectrum_factorization_principal, iInf_localization_eq_bot, NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal, Polynomial.idealX_span, Associates.finite_factors, NumberField.FinitePlace.norm_def', isMaximal, intValuation_if_neg, FractionalIdeal.count_well_defined, FractionalIdeal.count_finsuppProd, intValuationDef_if_neg, intValuation_le_pow_iff_mem, FractionalIdeal.count_finprod_coprime, ofPrime_asIdeal, FractionalIdeal.finprod_heightOneSpectrum_factorization, irreducible, intValuation_le_pow_iff_dvd, FractionalIdeal.count_finprod, FractionalIdeal.count_ne_zero, Polynomial.gaussNorm_lt_one_iff_contentIdeal_le, valuation_lt_one_iff_dvd, NumberField.FinitePlace.norm_lt_one_iff_mem, Rat.valuation_le_one_iff_den, ext_iff, intAdicAbv_lt_one_iff, FractionalIdeal.count_maximal_coprime, prime, valuation_lt_one_iff_mem, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def, Rat.HeightOneSpectrum.natGenerator_dvd_iff, NumberField.FinitePlace.norm_def_int, intValuation_lt_one_iff_dvd, Ideal.finite_mulSupport_coe, Rat.HeightOneSpectrum.span_natGenerator, intValuation_eq_one_iff, intAdicAbv_eq_one_iff, FractionalIdeal.count_zpow_self, intValuation_def, Ideal.finite_factors, NumberField.FinitePlace.norm_eq_one_iff_notMem, Ideal.finprod_count, maxPowDividing_eq_pow_multiset_count, FractionalIdeal.count_pow_self, NumberField.toNNReal_valued_eq_adicAbv, Ideal.finprod_heightOneSpectrum_factorization_coe, FractionalIdeal.finite_factors', FractionalIdeal.count_self, isPrime, FractionalIdeal.count_maximal, FractionalIdeal.finprod_heightOneSpectrum_factorization_principal_fraction, NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm, Ideal.finprod_not_dvd, associates_irreducible, Ideal.finite_mulSupport_inv, adicAbv_coe_eq_one_iff, ideal_ne_top_iff_exists, adicAbv_coe_lt_one_iff, FractionalIdeal.count_coe, intValuation_lt_one_iff_mem, FractionalIdeal.finprod_heightOneSpectrum_factorization'
equivMaximalSpectrum πŸ“–CompOpβ€”
equivPrimesOver πŸ“–CompOp
1 mathmath: equivPrimesOver_apply
ofPrime πŸ“–CompOp
1 mathmath: ofPrime_asIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
associates_irreducible πŸ“–mathematicalβ€”Irreducible
Associates
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
CommMonoidWithZero.toMonoidWithZero
Associates.instCommMonoidWithZero
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
asIdeal
β€”irreducible
equivPrimesOver_apply πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
Ideal.primesOver
DFunLike.coe
Equiv
IsDedekindDomain.HeightOneSpectrum
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
asIdeal
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equivPrimesOver
β€”IsScalarTower.right
ext πŸ“–β€”asIdealβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”asIdealβ€”ext
iInf_localization_eq_bot πŸ“–mathematicalβ€”iInf
Subalgebra
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsDedekindDomain.HeightOneSpectrum
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
Localization.subalgebra.ofField
Ideal.primeCompl
CommSemiring.toSemiring
asIdeal
isPrime
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Subalgebra.ext
isPrime
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
Algebra.mem_iInf
Function.bijective_iff_has_inverse
IsField.localization_map_bijective
nonZeroDivisors.ne_zero
IsDomain.toNontrivial
Algebra.mem_bot
Ideal.IsMaximal.isPrime'
MaximalSpectrum.isMaximal
MaximalSpectrum.iInf_localization_eq_bot
Ideal.IsPrime.isMaximal
IsDedekindRing.toDimensionLEOne
IsDedekindDomain.toIsDedekindRing
ideal_ne_top_iff_exists πŸ“–mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
asIdeal
β€”Ideal.ne_top_iff_exists_maximal
MaximalSpectrum.isMaximal
irreducible πŸ“–mathematicalβ€”Irreducible
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
asIdeal
β€”UniqueFactorizationMonoid.irreducible_iff_prime
Ideal.uniqueFactorizationMonoid
prime
isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
asIdeal
β€”Ideal.IsPrime.isMaximal
IsDedekindRing.toDimensionLEOne
IsDedekindDomain.toIsDedekindRing
isPrime
ne_bot
isPrime πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
asIdeal
β€”β€”
ne_bot πŸ“–β€”β€”β€”β€”β€”
ofPrime_asIdeal πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
asIdeal
ofPrime
β€”β€”
prime πŸ“–mathematicalβ€”Prime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
asIdeal
β€”Ideal.prime_of_isPrime
ne_bot
isPrime

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
primesOverFinset_eq πŸ“–mathematicalβ€”primesOverFinset
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset
Finset.instSingleton
maximalIdeal
β€”IsDomain.of_faithfulSMul
Finset.coe_eq_singleton
coe_primesOverFinset
FaithfulSMul.to_isTorsionFree
IsDomain.toNontrivial
IsDomain.toIsCancelMulZero
primesOver_eq

Ring.DimensionLeOne

Theorems

NameKindAssumesProvesValidatesDepends On
prime_le_prime_iff_eq πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.IsMaximal.eq_of_le
Ideal.IsPrime.isMaximal
Ideal.IsPrime.ne_top
Eq.le

(root)

Definitions

NameCategoryTheorems
idealFactorsEquivOfQuotEquiv πŸ“–CompOp
3 mathmath: idealFactorsEquivOfQuotEquiv_mem_normalizedFactors_of_mem_normalizedFactors, idealFactorsEquivOfQuotEquiv_symm, idealFactorsEquivOfQuotEquiv_is_dvd_iso
idealFactorsFunOfQuotHom πŸ“–CompOp
3 mathmath: idealFactorsFunOfQuotHom_comp, idealFactorsFunOfQuotHom_id, idealFactorsFunOfQuotHom_coe_coe
instFintypeElemIdealPrimesOver πŸ“–CompOp
1 mathmath: Ideal.map_algebraMap_eq_finset_prod_pow
normalizedFactorsEquivOfQuotEquiv πŸ“–CompOp
2 mathmath: normalizedFactorsEquivOfQuotEquiv_emultiplicity_eq_emultiplicity, normalizedFactorsEquivOfQuotEquiv_symm
normalizedFactorsEquivSpanNormalizedFactors πŸ“–CompOp
2 mathmath: emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_emultiplicity
primesOverFinset πŸ“–CompOp
5 mathmath: coe_primesOverFinset, Ideal.sum_ramification_inertia, Ideal.card_primesOverFinset_le_finrank, mem_primesOverFinset_iff, IsLocalRing.primesOverFinset_eq

Theorems

NameKindAssumesProvesValidatesDepends On
coe_primesOverFinset πŸ“–mathematicalβ€”SetLike.coe
Finset
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset.instSetLike
primesOverFinset
Ideal.primesOver
β€”Set.ext
Unique.instSubsingleton
Ideal.uniqueFactorizationMonoid
UniqueFactorizationMonoid.factors_eq_normalizedFactors
Ideal.mem_primesOver_iff_mem_normalizedFactors
count_associates_factors_eq πŸ“–mathematicalβ€”Associates.count
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Associates.factors
Ideal.uniqueFactorizationMonoid
Multiset.count
UniqueFactorizationMonoid.normalizedFactors
Ideal.normalizationMonoid
β€”Associates.mk_ne_zero
Prime.irreducible
Ideal.isCancelMulZero
Ideal.prime_of_isPrime
Ideal.uniqueFactorizationMonoid
Ideal.count_normalizedFactors_eq
IsScalarTower.right
Ideal.dvd_iff_le
Associates.mk_pow
Associates.prime_pow_dvd_iff_le
le_refl
count_le_of_ideal_ge πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Multiset.count
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
β€”Ideal.uniqueFactorizationMonoid
Multiset.le_iff_count
UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
ne_bot_of_le_ne_bot
IsScalarTower.right
Ideal.dvd_iff_le
count_span_normalizedFactors_eq πŸ“–mathematicalPrime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Multiset.count
Ideal
CommSemiring.toSemiring
Ideal.span
Set
Set.instSingletonSet
UniqueFactorizationMonoid.normalizedFactors
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
DFunLike.coe
MonoidWithZeroHom
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MonoidWithZeroHom.funLike
normalize
PrincipalIdealRing.to_uniqueFactorizationMonoid
β€”emultiplicity_eq_emultiplicity_span
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
IsScalarTower.left
Ideal.mul_top
Ideal.instIsTwoSided_1
Ideal.one_eq_top
Units.val_one
normUnit_eq_one
normalize_apply
UniqueFactorizationMonoid.emultiplicity_eq_count_normalizedFactors
Prime.irreducible
Ideal.isCancelMulZero
IsDomain.toIsCancelMulZero
count_span_normalizedFactors_eq_of_normUnit πŸ“–mathematicalNormalizationMonoid.normUnit
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Units.instOne
Prime
Multiset.count
Ideal
CommSemiring.toSemiring
Ideal.span
Set
Set.instSingletonSet
UniqueFactorizationMonoid.normalizedFactors
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
β€”Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
Multiset.count.congr_simp
mul_one
count_span_normalizedFactors_eq
emultiplicity_eq_emultiplicity_span πŸ“–mathematicalβ€”emultiplicity
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Ideal.span
Set
Set.instSingletonSet
β€”FiniteMultiplicity.emultiplicity_eq_multiplicity
emultiplicity_eq_of_dvd_of_not_dvd
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
IsScalarTower.right
span_singleton_dvd_span_singleton_iff_dvd
pow_multiplicity_dvd
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
FiniteMultiplicity.not_iff_forall
emultiplicity_eq_top
emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_emultiplicity πŸ“–mathematicalMultiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
PrincipalIdealRing.to_uniqueFactorizationMonoid
emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Ideal
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Set
Set.instMembership
setOf
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
Ideal.span
Set.instSingletonSet
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
normalizedFactorsEquivSpanNormalizedFactors
β€”PrincipalIdealRing.to_uniqueFactorizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
emultiplicity_eq_emultiplicity_span
emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity πŸ“–mathematicalβ€”emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
setOf
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
PrincipalIdealRing.to_uniqueFactorizationMonoid
DFunLike.coe
Equiv
Set.Elem
Ideal
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
Ideal.span
Set.instSingletonSet
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
normalizedFactorsEquivSpanNormalizedFactors
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
β€”Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
Equiv.surjective
Equiv.symm_apply_apply
emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_emultiplicity
idealFactorsEquivOfQuotEquiv_is_dvd_iso πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Set
Set.instMembership
setOf
DFunLike.coe
OrderIso
Set.Elem
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeOrderIso
idealFactorsEquivOfQuotEquiv
β€”IsScalarTower.right
OrderIso.le_iff_le
Ideal.dvd_iff_le
Subtype.coe_le_coe
idealFactorsEquivOfQuotEquiv_mem_normalizedFactors_of_mem_normalizedFactors πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
Set
Set.instMembership
setOf
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
DFunLike.coe
OrderIso
Set.Elem
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeOrderIso
idealFactorsEquivOfQuotEquiv
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
β€”Ideal.uniqueFactorizationMonoid
Finset.notMem_empty
Multiset.empty_eq_zero
UniqueFactorizationMonoid.normalizedFactors_zero
bot_eq_zero
Submodule.instCanonicallyOrderedAdd
mem_normalizedFactors_factor_dvd_iso_of_mem_normalizedFactors
Ideal.isCancelMulZero
Unique.instSubsingleton
IsScalarTower.right
idealFactorsEquivOfQuotEquiv_is_dvd_iso
idealFactorsEquivOfQuotEquiv_symm πŸ“–mathematicalβ€”OrderIso.symm
Set.Elem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
setOf
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Set
Set.instMembership
idealFactorsEquivOfQuotEquiv
RingEquiv.symm
HasQuotient.Quotient
Ideal.instHasQuotient_1
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
β€”IsScalarTower.right
idealFactorsFunOfQuotHom_coe_coe πŸ“–mathematicalHasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.semiring
RingHom.instFunLike
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
OrderHom
IsScalarTower.right
Algebra.id
Subtype.preorder
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
OrderHom.instFunLike
idealFactorsFunOfQuotHom
Ideal.comap
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.map
β€”IsScalarTower.right
idealFactorsFunOfQuotHom_comp πŸ“–mathematicalHasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.semiring
RingHom.instFunLike
OrderHom.comp
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Subtype.preorder
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
idealFactorsFunOfQuotHom
RingHom.comp
β€”OrderHom.ext
IsScalarTower.right
Ideal.instIsTwoSided_1
idealFactorsFunOfQuotHom.eq_1
OrderHom.comp_coe
RingHom.instRingHomClass
Ideal.map_comap_of_surjective
Ideal.Quotient.mk_surjective
Ideal.map_map
idealFactorsFunOfQuotHom_id πŸ“–mathematicalβ€”idealFactorsFunOfQuotHom
RingHom.id
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Semiring.toNonAssocSemiring
Ideal.Quotient.semiring
RingHom.surjective
RingHomSurjective.ids
OrderHom.id
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Subtype.preorder
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”OrderHom.ext
IsScalarTower.right
RingHom.surjective
RingHomSurjective.ids
Ideal.instIsTwoSided_1
RingHom.instRingHomClass
Ideal.comap.congr_simp
Ideal.map_id
Ideal.comap_map_of_surjective
Ideal.Quotient.mk_surjective
Ideal.mk_ker
sup_eq_left
Ideal.dvd_iff_le
Subtype.prop
Subtype.coe_eta
irreducible_pow_sup πŸ“–mathematicalIrreducible
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Multiset.count
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
β€”IsScalarTower.right
Ideal.uniqueFactorizationMonoid
sup_eq_prod_inf_factors
pow_ne_zero
isReduced_of_noZeroDivisors
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
Irreducible.ne_zero
min_comm
UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow
Unique.instSubsingleton
normalize_eq
Multiset.replicate_inter
Multiset.prod_replicate
irreducible_pow_sup_of_ge πŸ“–mathematicalIrreducible
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
multiplicity
β€”IsScalarTower.right
Ideal.uniqueFactorizationMonoid
irreducible_pow_sup
min_eq_left
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Unique.instSubsingleton
normalize_eq
UniqueFactorizationMonoid.emultiplicity_eq_count_normalizedFactors
FiniteMultiplicity.emultiplicity_eq_multiplicity
emultiplicity_lt_top
LE.le.trans_lt
irreducible_pow_sup_of_le πŸ“–mathematicalIrreducible
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
β€”IsScalarTower.right
sup_of_le_left
Ideal.uniqueFactorizationMonoid
irreducible_pow_sup
min_eq_right
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Unique.instSubsingleton
normalize_eq
UniqueFactorizationMonoid.emultiplicity_eq_count_normalizedFactors
map_prime_of_equiv πŸ“–mathematicalPrime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
β€”Ideal.prime_iff_isPrime
Iff.not
Ideal.map_eq_bot_iff_of_injective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.injective
Ideal.map_isPrime_of_equiv
mem_primesOverFinset_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset
Finset.instMembership
primesOverFinset
Set
Set.instMembership
Ideal.primesOver
β€”Finset.mem_coe
coe_primesOverFinset
normalizedFactorsEquivOfQuotEquiv_emultiplicity_eq_emultiplicity πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Set
Set.instMembership
setOf
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
normalizedFactorsEquivOfQuotEquiv
β€”Ideal.uniqueFactorizationMonoid
normalizedFactorsEquivOfQuotEquiv.eq_1
emultiplicity_factor_dvd_iso_eq_emultiplicity_of_mem_normalizedFactors
Ideal.isCancelMulZero
Unique.instSubsingleton
IsScalarTower.right
idealFactorsEquivOfQuotEquiv_is_dvd_iso
normalizedFactorsEquivOfQuotEquiv_symm πŸ“–mathematicalβ€”Equiv.symm
Set.Elem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
setOf
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
normalizedFactorsEquivOfQuotEquiv
RingEquiv.symm
HasQuotient.Quotient
Ideal.instHasQuotient_1
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
β€”Ideal.uniqueFactorizationMonoid
one_le_primesOver_ncard πŸ“–mathematicalβ€”Set.ncard
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.primesOver
β€”primesOver_ncard_ne_zero
primesOver_finite πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.primesOver
β€”Ideal.primesOver_bot
IsDomain.of_bot_isPrime
Ideal.isPrime_bot
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
Set.finite_singleton
coe_primesOverFinset
Finset.finite_toSet
primesOver_ncard_ne_zero πŸ“–β€”β€”β€”β€”Ideal.exists_maximal_ideal_liesOver_of_isIntegral
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Set.ncard_ne_zero_of_mem
Ideal.IsMaximal.isPrime
primesOver_finite
prod_normalizedFactors_eq_self πŸ“–mathematicalβ€”Multiset.prod
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
β€”Ideal.uniqueFactorizationMonoid
associated_iff_eq
Unique.instSubsingleton
UniqueFactorizationMonoid.prod_normalizedFactors
singleton_span_mem_normalizedFactors_of_mem_normalizedFactors πŸ“–mathematicalMultiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
PrincipalIdealRing.to_uniqueFactorizationMonoid
Ideal
CommSemiring.toSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
Ideal.span
Set
Set.instSingletonSet
β€”PrincipalIdealRing.to_uniqueFactorizationMonoid
Ideal.uniqueFactorizationMonoid
IsPrincipalIdealRing.isDedekindDomain
Ideal.span_singleton_eq_bot
bot_eq_zero
Submodule.instCanonicallyOrderedAdd
UniqueFactorizationMonoid.normalizedFactors_zero
Multiset.notMem_zero
Ideal.prime_iff_isPrime
Prime.ne_zero
UniqueFactorizationMonoid.prime_of_normalized_factor
Ideal.span_singleton_prime
UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
Prime.irreducible
Ideal.isCancelMulZero
IsScalarTower.right
Ideal.dvd_iff_le
Ideal.span_singleton_le_span_singleton
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
associated_iff_eq
Unique.instSubsingleton
span_singleton_dvd_span_singleton_iff_dvd πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.span
Set
Set.instSingletonSet
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”IsScalarTower.right
Ideal.mem_span_singleton
Ideal.dvd_iff_le
IsPrincipalIdealRing.isDedekindDomain
dvd_refl
dvd_trans
sup_eq_prod_inf_factors πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Multiset.prod
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Multiset
Multiset.instInter
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
β€”Ideal.uniqueFactorizationMonoid
UniqueFactorizationMonoid.normalizedFactors_prod_of_prime
Unique.instSubsingleton
UniqueFactorizationMonoid.prime_of_normalized_factor
Multiset.mem_inter
Multiset.prod_ne_zero_of_prime
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
Ideal.instNontrivial
IsDomain.toNontrivial
le_antisymm
sup_le_iff
IsScalarTower.right
Ideal.dvd_iff_le
UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
inf_le_left
inf_le_right
ne_bot_of_le_ne_bot
le_sup_left
Multiset.le_iff_count
Multiset.count_inter
le_min
count_le_of_ideal_ge
le_sup_right

---

← Back to Index