Documentation Verification Report

IntegralClosure

πŸ“ Source: Mathlib/RingTheory/DedekindDomain/IntegralClosure.lean

Statistics

MetricCount
Definitions0
Theoremsexists_is_basis_integral, finite, isDedekindDomain, isLocalization, isLocalization_of_isSeparable, isNoetherian, isNoetherianRing, module_free, range_le_span_dualBasis, rank, exists_integral_multiples, isDedekindDomain, isDedekindDomain_fractionRing, isNoetherianRing, integralClosure_le_span_dualBasis
15
Total15

FiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
exists_is_basis_integral πŸ“–mathematicalβ€”IsIntegral
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Module.Basis
Finset
SetLike.instMembership
Finset.instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Module.Basis.instFunLike
β€”isNoetherian_of_isNoetherianRing_of_finite
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
exists_integral_multiples
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsFractionRing.injective
smulCommClass_self
IsScalarTower.left
RingHomInvPair.ids
AddHom.map_add'
LinearMap.map_smul'
inv_mul_cancel_leftβ‚€
mul_inv_cancel_leftβ‚€
Algebra.smul_def

IsIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
finite πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Module.IsNoetherian.finite
isNoetherian
isDedekindDomain πŸ“–mathematicalβ€”IsDedekindDomainβ€”isFractionRing_of_finite_extension
isIntegral_algebra
isNoetherianRing
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsDedekindRing.toIsNoetherian
Ring.DimensionLEOne.isIntegralClosure
IsDomain.toNontrivial
IsDedekindRing.toDimensionLEOne
isIntegrallyClosed_iff
isIntegral_trans
algebraMap_mk'
isLocalization πŸ“–mathematicalβ€”IsLocalization
CommRing.toCommSemiring
Algebra.algebraMapSubmonoid
CommSemiring.toSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
Semifield.toCommSemiring
Field.toSemifield
β€”isUnit_iff_ne_zero
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
algebraMap_injective
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
MulEquiv.isDomain
instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
integralClosure.isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right
isTorsionFree
Module.IsTorsionFree.trans_faithfulSMul
IsFractionRing.instFaithfulSMul
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsIntegral.exists_multiple_integral_of_isLocalization
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
isIntegral_iff
SetLike.coe_mem
IsScalarTower.algebraMap_apply
mul_comm
Submonoid.smul_def
Algebra.smul_def
isLocalization_of_isSeparable πŸ“–mathematicalβ€”IsLocalization
CommRing.toCommSemiring
Algebra.algebraMapSubmonoid
CommSemiring.toSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
Semifield.toCommSemiring
Field.toSemifield
β€”isLocalization
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isNoetherian πŸ“–mathematicalβ€”IsNoetherian
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”FiniteDimensional.exists_is_basis_integral
Finite.of_fintype
traceForm_nondegenerate
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul'
RingHomCompTriple.ids
range_le_span_dualBasis
isNoetherian_of_ker_bot
isNoetherian_span_of_finite
Set.finite_range
LinearMap.ker_comp
Submodule.ker_inclusion
Submodule.comap_bot
LinearMap.mem_range_self
LinearMap.ker_codRestrict
LinearMap.ker_eq_bot_of_injective
algebraMap_injective
isNoetherianRing πŸ“–mathematicalβ€”IsNoetherianRing
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”isNoetherianRing_iff
isNoetherian_of_tower
IsScalarTower.right
isNoetherian
module_free πŸ“–mathematicalβ€”Module.Free
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Module.free_of_finite_type_torsion_free'
Module.IsNoetherian.finite
isNoetherian
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
IsDedekindRing.toIsNoetherian
isTorsionFree
range_le_span_dualBasis πŸ“–mathematicalIsIntegral
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Module.Basis.instFunLike
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.range
RingHom.id
RingHomSurjective.ids
LinearMap.restrictScalars
Semiring.toModule
LinearMap.IsScalarTower.compatibleSMul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.linearMap
Submodule.span
Set.range
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
LinearMap.BilinForm.dualBasis
Algebra.traceForm
traceForm_nondegenerate
β€”RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul'
traceForm_nondegenerate
LinearMap.BilinForm.dualSubmodule_span_of_basis
LinearMap.BilinForm.le_flip_dualSubmodule
Submodule.span_le
Submodule.mem_one
IsIntegrallyClosed.isIntegral_iff
Algebra.isIntegral_trace
IsIntegral.mul
IsIntegral.algebraMap
isIntegral
rank πŸ“–mathematicalβ€”Module.finrank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semifield.toCommSemiring
β€”module_free
isLocalization
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsNoetherian.finite
isNoetherian
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
IsDedekindRing.toIsNoetherian
Module.finrank_eq_card_chooseBasisIndex
commRing_strongRankCondition
IsDomain.toNontrivial
Module.finrank_eq_card_basis

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_integral_multiples πŸ“–mathematicalβ€”IsIntegral
DivisionRing.toRing
Field.toDivisionRing
Algebra.toSMul
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”IsLocalization.isAlgebraic
IsDomain.toNontrivial
Algebra.IsAlgebraic.trans
IsDomain.to_noZeroDivisors
instIsDomain
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsAlgebraic.exists_integral_multiples
integralClosure_le_span_dualBasis πŸ“–mathematicalIsIntegral
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Module.Basis.instFunLike
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
OrderEmbedding
Subalgebra
Subalgebra.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
integralClosure
Submodule.span
Set.range
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
LinearMap.BilinForm.dualBasis
Algebra.traceForm
traceForm_nondegenerate
β€”le_trans
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul'
IsScalarTower.subalgebra'
IsScalarTower.right
traceForm_nondegenerate
IsIntegralClosure.range_le_span_dualBasis
integralClosure.isIntegralClosure

integralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isDedekindDomain πŸ“–mathematicalβ€”IsDedekindDomain
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommRing
β€”IsIntegralClosure.isDedekindDomain
isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right
instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
isDedekindDomain_fractionRing πŸ“–mathematicalβ€”IsDedekindDomain
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommRing
β€”IsScalarTower.right
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
isDedekindDomain
Localization.isLocalization
isNoetherianRing πŸ“–mathematicalβ€”IsNoetherianRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toSemiring
β€”IsIntegralClosure.isNoetherianRing
isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right

---

← Back to Index