Documentation Verification Report

LinearDisjoint

📁 Source: Mathlib/RingTheory/DedekindDomain/LinearDisjoint.lean

Statistics

MetricCount
DefinitionsofIsCoprimeDifferentIdeal
1
Theoremsadjoin_union_eq_top_of_isCoprime_differentialIdeal, differentIdeal_dvd_map_differentIdeal, differentIdeal_eq_differentIdeal_mul_differentIdeal_of_isCoprime, differentIdeal_eq_map_differentIdeal, map_differentIdeal_dvd_differentIdeal, range_sup_range_eq_top_of_isCoprime_differentIdeal, ofIsCoprimeDifferentIdeal_apply, traceDual_eq_span_map_traceDual_of_linearDisjoint, traceDual_le_span_map_traceDual
9
Total10

IsDedekindDomain

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_union_eq_top_of_isCoprime_differentialIdeal 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
IntermediateField.toSubalgebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsCoprime
Ideal
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
Algebra.adjoin
Set
Set.instUnion
Set.image
DFunLike.coe
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IntermediateField.isScalarTower_mid'
Algebra.adjoin_union
IsScalarTower.coe_toAlgHom'
AlgHom.map_adjoin
Algebra.map_top
range_sup_range_eq_top_of_isCoprime_differentIdeal
differentIdeal_dvd_map_differentIdeal 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Ideal
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
differentIdeal
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Module.IsReflexive.to_isTorsionFree
Module.instIsReflexiveOfFiniteOfProjective
Module.Projective.of_free
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.isScalarTower_mid'
toIsDomain
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
IsDomain.toNontrivial
Algebra.IsSeparable.of_equiv_equiv
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsFractionRing.algEquiv_commutes
IntermediateField.isScalarTower
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
Module.IsReflexive.to_isTorsionFree
Module.instIsReflexiveOfFiniteOfProjective
Module.Projective.of_free
Ideal.dvd_iff_le
FractionalIdeal.coeIdeal_le_coeIdeal
IsDedekindDomainDvr.isIntegrallyClosed
isDedekindDomainDvr
IntermediateField.finiteDimensional_right
IsDomain.to_noZeroDivisors
coeIdeal_differentIdeal
FractionalIdeal.extendedHomₐ_coeIdeal_eq_map
FractionalIdeal.le_inv_comm
map_ne_zero
FractionalIdeal.instNontrivialNonZeroDivisors
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Iff.not
FractionalIdeal.coeIdeal_eq_zero
differentIdeal_ne_bot
NeZero.one
map_inv₀
IntermediateField.finiteDimensional_left
IsIntegralClosure.of_isIntegrallyClosed
Algebra.IsIntegral.of_finite
inv_inv
FractionalIdeal.coe_le_coe
FractionalIdeal.coe_dual_one
FractionalIdeal.coe_extendedHomₐ_eq_span
FractionalIdeal.coeToSet_coeToSubmodule
Submodule.span_mono
Submodule.traceDual_le_span_map_traceDual
Submodule.span_eq
Submodule.span_span_of_tower
Submodule.span_coe_eq_restrictScalars
differentIdeal_eq_differentIdeal_mul_differentIdeal_of_isCoprime 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsCoprime
Ideal
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
Submodule.mul
Semiring.toModule
IsScalarTower.right
toIsDomain
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IntermediateField.isScalarTower_mid'
IsScalarTower.right
differentIdeal_eq_differentIdeal_mul_differentIdeal
mul_comm
differentIdeal_eq_map_differentIdeal
differentIdeal_eq_map_differentIdeal 📖—IntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsCoprime
Ideal
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
——IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IntermediateField.isScalarTower_mid'
dvd_antisymm
Ideal.isCancelMulZero
Unique.instSubsingleton
differentIdeal_dvd_map_differentIdeal
Algebra.IsIntegral.of_finite
Algebra.IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
Module.Free.instFaithfulSMulOfNontrivial
Algebra.IsAlgebraic.of_finite
IsDomain.to_noZeroDivisors
map_differentIdeal_dvd_differentIdeal
map_differentIdeal_dvd_differentIdeal 📖mathematicalIsCoprime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Algebra.id
—toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsScalarTower.right
differentIdeal_eq_differentIdeal_mul_differentIdeal
IsCoprime.dvd_of_dvd_mul_right
IsCoprime.symm
dvd_of_mul_left_eq
range_sup_range_eq_top_of_isCoprime_differentIdeal 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
IntermediateField.toSubalgebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsCoprime
Ideal
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
AlgHom.range
IsScalarTower.toAlgHom
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IntermediateField.isScalarTower_mid'
Algebra.eq_top_iff
RingHomInvPair.ids
Module.Basis.sum_repr
Subalgebra.sum_mem
Algebra.smul_def
Subalgebra.mul_mem
Algebra.mem_sup_left
Algebra.mem_sup_right
Module.Basis.ofIsCoprimeDifferentIdeal_apply

Module.Basis

Definitions

NameCategoryTheorems
ofIsCoprimeDifferentIdeal 📖CompOp
1 mathmath: ofIsCoprimeDifferentIdeal_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ofIsCoprimeDifferentIdeal_apply 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
IntermediateField.toSubalgebra
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsCoprime
Ideal
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
DFunLike.coe
Module.Basis
instFunLike
ofIsCoprimeDifferentIdeal
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IntermediateField.isScalarTower_mid'

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
traceDual_eq_span_map_traceDual_of_linearDisjoint 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsCoprime
Ideal
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
differentIdeal
span
Set.image
DFunLike.coe
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
SetLike.coe
Submodule
setLike
traceDual
IntermediateField.isScalarTower
one
restrictScalars
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsDedekindDomain.toIsDomain
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IntermediateField.isScalarTower_mid'
Module.Free.instFaithfulSMulOfNontrivial
Algebra.IsSeparable.of_equiv_equiv
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsFractionRing.algEquiv_commutes
IntermediateField.isScalarTower
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
dvd_of_eq
IsDedekindDomain.differentIdeal_eq_map_differentIdeal
IntermediateField.finiteDimensional_left
IsIntegralClosure.of_isIntegrallyClosed
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
Algebra.IsIntegral.of_finite
IsDomain.to_noZeroDivisors
FractionalIdeal.coe_dual_one
FractionalIdeal.coeToSet_coeToSubmodule
IntermediateField.finiteDimensional_right
FractionalIdeal.coe_extendedHomₐ_eq_span
FractionalIdeal.coe_le_coe
inv_inv
map_inv₀
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeIdeal_differentIdeal
FractionalIdeal.extendedHomₐ_coeIdeal_eq_map
FractionalIdeal.inv_le_comm
NeZero.one
FractionalIdeal.instNontrivialNonZeroDivisors
FractionalIdeal.extendedHomₐ_eq_zero_iff
FractionalIdeal.coeIdeal_eq_zero
differentIdeal_ne_bot
FractionalIdeal.coeIdeal_le_coeIdeal
Ideal.dvd_iff_le
le_antisymm
SetLike.coe_subset_coe
instIsConcreteLE
subset_trans
Set.instIsTransSubset
span_span_of_tower
subset_span
traceDual_le_span_map_traceDual
traceDual_le_span_map_traceDual 📖mathematicalIntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule
CommRing.toCommSemiring
instPartialOrder
restrictScalars
traceDual
one
span
Set.image
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
RingHom.instFunLike
algebraMap
SetLike.coe
setLike
IntermediateField.isScalarTower
—IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.isScalarTower_mid'
IntermediateField.sup_toSubalgebra_of_isAlgebraic_right
IntermediateField.isAlgebraic_tower_bot
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isScalarTower
IntermediateField.finiteDimensional_right
Finite.of_fintype
RingHomInvPair.ids
Module.Basis.mem_span_iff_repr_mem
SubsemiringClass.nontrivial
Module.Basis.traceDual_repr_apply
mem_traceDual
IntermediateField.LinearDisjoint.basisOfBasisRight_apply
Module.Basis.localizationLocalization_apply
IsScalarTower.algebraMap_apply
mem_one
IntermediateField.finiteDimensional_left
Module.Basis.traceDual_eq_iff
Algebra.traceForm_apply
IsScalarTower.coe_toAlgHom'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IntermediateField.LinearDisjoint.trace_algebraMap
Module.Basis.trace_traceDual_mul
MonoidWithZeroHom.map_ite_one_zero
RingHomClass.toMonoidWithZeroHomClass
RingHomSurjective.ids
traceDual_span_of_basis
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Module.Basis.localizationLocalization_span
ext
map_span
AlgHom.coe_toLinearMap
Set.range_comp
span_span_of_tower

---

← Back to Index