Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/DiscreteValuationRing/Basic.lean

Statistics

MetricCount
DefinitionsIsDiscreteValuationRing, HasUnitMulPowIrreducibleFactorization, addVal, quotient, remainder, toEuclideanDomain, toWithBotNat
7
TheoremsaddVal_pow, maximalIdeal_eq, maximalIdeal_eq_setOf_le_v_coe, maximalIdeal_pow_eq_setOf_le_v_coe_pow, of_ufd_of_unique_irreducible, toUniqueFactorizationMonoid, unique_irreducible, isDiscreteValuationRing, addVal_add, addVal_def, addVal_def', addVal_eq_top_iff, addVal_eq_zero_iff, addVal_eq_zero_of_unit, addVal_le_iff_dvd, addVal_mul, addVal_one, addVal_pow, addVal_uniformizer, addVal_zero, associated_of_irreducible, associated_pow_irreducible, aux_pid_of_ufd_of_unique_irreducible, bot_lt_toWithBotNat_iff, dvd_of_toWithBotNat_le_toWithBotNat, eq_unit_mul_pow_irreducible, exists_irreducible, exists_prime, ideal_eq_span_pow_irreducible, iff_pid_with_one_nonzero_prime, instIsHausdorffMaximalIdeal, irreducible_iff_uniformizer, irreducible_of_span_eq_maximalIdeal, not_a_field, not_a_field', not_isField, ofHasUnitMulPowIrreducibleFactorization, of_ufd_of_unique_irreducible, toIsLocalRing, toIsPrincipalIdealRing, toWithBotNat_eq_bot_iff, toWithBotNat_le_toWithBotNat_iff, toWithBotNat_zero, unit_mul_pow_congr_pow, unit_mul_pow_congr_unit, maximalIdeal_eq_setOf_le_v_algebraMap, maximalIdeal_pow_eq_setOf_le_v_algebraMap_pow, of_isDiscreteValuationRing
48
Total55

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
addVal_pow πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
IsDiscreteValuationRing.addVal
Monoid.toNatPow
ENat.instNatCast
β€”IsDiscreteValuationRing.addVal_pow
IsDiscreteValuationRing.addVal_uniformizer
nsmul_one
maximalIdeal_eq πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
IsLocalRing.maximalIdeal
IsDiscreteValuationRing.toIsLocalRing
Ideal.span
Set
Set.instSingletonSet
β€”IsDiscreteValuationRing.toIsLocalRing
IsDiscreteValuationRing.irreducible_iff_uniformizer
maximalIdeal_eq_setOf_le_v_coe πŸ“–mathematicalIrreducible
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
IsDiscreteValuationRing.toIsLocalRing
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring.instIsDomainSubtypeMem
instIsDomain
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
β€”Subring.instIsDomainSubtypeMem
instIsDomain
SubringClass.toSubsemiringClass
Subring.instSubringClass
Valuation.Integers.maximalIdeal_eq_setOf_le_v_algebraMap
Valuation.integer.integers
maximalIdeal_pow_eq_setOf_le_v_coe_pow πŸ“–mathematicalIrreducible
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsLocalRing.maximalIdeal
IsDiscreteValuationRing.toIsLocalRing
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring.instIsDomainSubtypeMem
instIsDomain
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
Valuation.instFunLike
Monoid.toNatPow
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”Subring.instIsDomainSubtypeMem
instIsDomain
SubringClass.toSubsemiringClass
Subring.instSubringClass
Valuation.Integers.maximalIdeal_pow_eq_setOf_le_v_algebraMap_pow
Valuation.integer.integers

IsDiscreteValuationRing

Definitions

NameCategoryTheorems
HasUnitMulPowIrreducibleFactorization πŸ“–MathDef
2 mathmath: HasUnitMulPowIrreducibleFactorization.of_ufd_of_unique_irreducible, PowerSeries.hasUnitMulPowIrreducibleFactorization
addVal πŸ“–CompOp
13 mathmath: addVal_zero, addVal_def', Irreducible.addVal_pow, addVal_uniformizer, addVal_mul, addVal_add, addVal_pow, addVal_eq_zero_iff, addVal_eq_top_iff, addVal_eq_zero_of_unit, addVal_def, addVal_one, addVal_le_iff_dvd
quotient πŸ“–CompOpβ€”
remainder πŸ“–CompOpβ€”
toEuclideanDomain πŸ“–CompOpβ€”
toWithBotNat πŸ“–CompOp
4 mathmath: toWithBotNat_zero, bot_lt_toWithBotNat_iff, toWithBotNat_eq_bot_iff, toWithBotNat_le_toWithBotNat_iff

Theorems

NameKindAssumesProvesValidatesDepends On
addVal_add πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
SemilatticeInf.toMin
DFunLike.coe
AddValuation
CommRing.toRing
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”AddValuation.map_add
addVal_def πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
Monoid.toNatPow
DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
ENat.instNatCast
β€”exists_prime
addVal.eq_1
multiplicity_addValuation_apply
emultiplicity_eq_of_associated_left
associated_of_irreducible
Prime.irreducible
IsDomain.toIsCancelMulZero
emultiplicity_eq_of_associated_right
Associated.symm
mul_comm
emultiplicity_pow_self_of_prime
irreducible_iff_prime
UniqueFactorizationMonoid.instDecompositionMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
toIsPrincipalIdealRing
addVal_def' πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
Monoid.toNatPow
ENat.instNatCast
β€”addVal_def
addVal_eq_top_iff πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
Top.top
instTopENat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”exists_prime
Prime.irreducible
IsDomain.toIsCancelMulZero
Mathlib.Tactic.Contrapose.contrapose₁
associated_pow_irreducible
Associated.symm
mul_comm
addVal_def'
addVal_zero
addVal_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
instZeroENat
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eq_or_ne
AddValuation.map_zero
NeZero.one
IsLocalRing.toNontrivial
toIsLocalRing
exists_irreducible
eq_unit_mul_pow_irreducible
AddValuation.map_mul
addVal_eq_zero_of_unit
AddValuation.map_pow
addVal_uniformizer
nsmul_eq_mul
mul_one
zero_add
instIsDedekindFiniteMonoid
isUnit_pow_iff_of_not_isUnit
Irreducible.not_isUnit
addVal_eq_zero_of_unit πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instZeroENat
β€”exists_irreducible
addVal_def
pow_zero
mul_one
CharP.cast_eq_zero
CharP.ofCharZero
addVal_le_iff_dvd πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
DFunLike.coe
AddValuation
CommRing.toRing
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”exists_prime
addVal_eq_top_iff
top_le_iff
addVal_zero
dvd_zero
associated_pow_irreducible
Prime.irreducible
IsDomain.toIsCancelMulZero
Dvd.dvd.trans
Associated.dvd
emultiplicity_le_emultiplicity_iff
multiplicity_addValuation_apply
addVal.eq_1
Associated.symm
emultiplicity_le_emultiplicity_of_dvd_right
addVal_mul πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”AddValuation.map_mul
addVal_one πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instZeroENat
β€”AddValuation.map_one
addVal_pow πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”AddValuation.map_pow
addVal_uniformizer πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”pow_one
one_mul
Nat.cast_one
addVal_def
addVal_zero πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
CommRing.toRing
ENat
instLinearOrderedAddCommMonoidWithTopENat
AddValuation.instFunLike
addVal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Top.top
instTopENat
β€”AddValuation.map_zero
associated_of_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associatedβ€”Ideal.span_singleton_eq_span_singleton
toIsLocalRing
irreducible_iff_uniformizer
associated_pow_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associated
Monoid.toNatPow
β€”IsNoetherianRing.wfDvdMonoid
PrincipalIdealRing.isNoetherianRing
toIsPrincipalIdealRing
WfDvdMonoid.exists_factors
Associates.mk_eq_mk_iff_associated
Associates.mk_pow
Multiset.prod_replicate
Multiset.eq_replicate
Multiset.card_map
associated_of_irreducible
aux_pid_of_ufd_of_unique_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associated
IsPrincipalIdealRingβ€”Submodule.span_zero
Submodule.ne_bot_iff
HasUnitMulPowIrreducibleFactorization.of_ufd_of_unique_irreducible
Units.mul_inv_cancel_right
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
le_antisymm
pow_dvd_pow
Nat.find_min'
Ideal.span_singleton_le_iff_mem
Nat.find_spec
bot_lt_toWithBotNat_iff πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Bot.bot
WithBot.bot
toWithBotNat
β€”bot_lt_iff_ne_bot
dvd_of_toWithBotNat_le_toWithBotNat πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
toWithBotNat
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”toWithBotNat.congr_simp
toWithBotNat_zero
toWithBotNat_le_toWithBotNat_iff
eq_unit_mul_pow_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
Monoid.toNatPow
β€”associated_pow_irreducible
Associated.symm
mul_comm
exists_irreducible πŸ“–mathematicalβ€”Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”toIsLocalRing
Submodule.IsPrincipal.principal
IsPrincipalIdealRing.principal
toIsPrincipalIdealRing
exists_prime πŸ“–mathematicalβ€”Prime
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
β€”irreducible_iff_prime
IsDomain.toIsCancelMulZero
UniqueFactorizationMonoid.instDecompositionMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
toIsPrincipalIdealRing
exists_irreducible
ideal_eq_span_pow_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
Monoid.toNatPow
β€”IsPrincipalIdealRing.principal
toIsPrincipalIdealRing
Submodule.IsPrincipal.eq_bot_iff_generator_eq_zero
associated_pow_irreducible
Ideal.span_singleton_generator
Ideal.span_singleton_eq_span_singleton
iff_pid_with_one_nonzero_prime πŸ“–mathematicalβ€”IsDiscreteValuationRing
IsPrincipalIdealRing
CommSemiring.toSemiring
CommRing.toCommSemiring
ExistsUnique
Ideal
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.IsPrime
β€”Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
Submodule.IsPrincipal.principal
IsPrincipalIdealRing.principal
Ideal.span_singleton_zero
Prime.irreducible
IsDomain.toIsCancelMulZero
Ideal.span_singleton_prime
Ideal.submodule_span_eq
toIsLocalRing
irreducible_iff_uniformizer
IsLocalRing.of_unique_nonzero_prime
IsLocalRing.le_maximalIdeal
Ideal.IsPrime.ne_top'
le_antisymm
le_trans
le_of_eq
le_refl
bot_le
instIsHausdorffMaximalIdeal πŸ“–mathematicalβ€”IsHausdorff
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
toIsLocalRing
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
β€”toIsLocalRing
IsScalarTower.left
IsScalarTower.right
exists_irreducible
addVal_eq_top_iff
WithTop.eq_top_iff_forall_ge
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Irreducible.maximalIdeal_eq
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
mul_one
Irreducible.addVal_pow
irreducible_iff_uniformizer πŸ“–mathematicalβ€”Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
IsLocalRing.maximalIdeal
toIsLocalRing
Ideal.span
Set
Set.instSingletonSet
β€”toIsLocalRing
IsLocalRing.eq_maximalIdeal
PrincipalIdealRing.isMaximal_of_irreducible
toIsPrincipalIdealRing
irreducible_of_span_eq_maximalIdeal
not_a_field
Ideal.span_singleton_eq_bot
irreducible_of_span_eq_maximalIdeal πŸ“–mathematicalIsLocalRing.maximalIdeal
Ideal.span
CommSemiring.toSemiring
Set
Set.instSingletonSet
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Submodule.mem_span_singleton_self
Ideal.mem_span_singleton'
eq_zero_of_mul_eq_self_right
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
isUnit_of_dvd_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
not_a_field πŸ“–β€”β€”β€”β€”not_a_field'
not_a_field' πŸ“–β€”β€”β€”β€”β€”
not_isField πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”toIsLocalRing
Iff.not
IsLocalRing.isField_iff_maximalIdeal_eq
not_a_field
ofHasUnitMulPowIrreducibleFactorization πŸ“–mathematicalHasUnitMulPowIrreducibleFactorizationIsDiscreteValuationRingβ€”of_ufd_of_unique_irreducible
HasUnitMulPowIrreducibleFactorization.toUniqueFactorizationMonoid
IsDomain.toIsCancelMulZero
HasUnitMulPowIrreducibleFactorization.unique_irreducible
of_ufd_of_unique_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associated
IsDiscreteValuationRingβ€”iff_pid_with_one_nonzero_prime
aux_pid_of_ufd_of_unique_irreducible
Submodule.ne_bot_iff
Ideal.mem_span_singleton
dvd_refl
Irreducible.ne_zero
Ideal.span_singleton_prime
UniqueFactorizationMonoid.irreducible_iff_prime
IsPrincipalIdealRing.principal
Submodule.IsPrincipal.span_singleton_generator
Ideal.span_singleton_eq_span_singleton
Submodule.span_singleton_eq_bot
toIsLocalRing πŸ“–mathematicalβ€”IsLocalRing
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
toIsPrincipalIdealRing πŸ“–mathematicalβ€”IsPrincipalIdealRing
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
toWithBotNat_eq_bot_iff πŸ“–mathematicalβ€”toWithBotNat
Bot.bot
WithBot
WithBot.bot
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”addVal_eq_top_iff
toWithBotNat_le_toWithBotNat_iff πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
toWithBotNat
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”addVal_eq_top_iff
addVal_le_iff_dvd
WithBot.coe_le_coe
WithTop.coe_le_coe
toWithBotNat_zero πŸ“–mathematicalβ€”toWithBotNat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Bot.bot
WithBot
WithBot.bot
β€”addVal_zero
unit_mul_pow_congr_pow πŸ“–β€”Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
Monoid.toNatPow
β€”β€”Multiset.prod_replicate
Associated.eq_1
mul_left_comm
mul_assoc
mul_right_comm
Units.mul_inv
one_mul
Multiset.card_eq_card_of_rel
UniqueFactorizationMonoid.factors_unique
PrincipalIdealRing.to_uniqueFactorizationMonoid
toIsPrincipalIdealRing
Multiset.eq_of_mem_replicate
Multiset.card_replicate
unit_mul_pow_congr_unit πŸ“–β€”Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
Monoid.toNatPow
β€”β€”mul_eq_zero
IsDomain.to_noZeroDivisors
sub_mul
sub_eq_zero
Irreducible.ne_zero
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
unit_mul_pow_congr_pow

IsDiscreteValuationRing.HasUnitMulPowIrreducibleFactorization

Theorems

NameKindAssumesProvesValidatesDepends On
of_ufd_of_unique_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associated
IsDiscreteValuationRing.HasUnitMulPowIrreducibleFactorizationβ€”WfDvdMonoid.exists_factors
UniqueFactorizationMonoid.toIsWellFounded
Associates.mk_eq_mk_iff_associated
Associates.mk_pow
Multiset.prod_replicate
Multiset.eq_replicate
Multiset.card_map
toUniqueFactorizationMonoid πŸ“–mathematicalIsDiscreteValuationRing.HasUnitMulPowIrreducibleFactorizationUniqueFactorizationMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
β€”UniqueFactorizationMonoid.of_exists_prime_factors
Multiset.eq_of_mem_replicate
Irreducible.ne_zero
Irreducible.not_isUnit
Units.dvd_mul_right
pow_zero
one_mul
Units.dvd_mul_left
mul_left_comm
mul_assoc
pow_succ'
dvd_mul_of_dvd_left
dvd_rfl
Multiset.prod_replicate
unique_irreducible πŸ“–mathematicalIsDiscreteValuationRing.HasUnitMulPowIrreducibleFactorization
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Associatedβ€”Irreducible.ne_zero
Associated.irreducible
Associated.symm
lt_trichotomy
pow_zero
pow_one
Irreducible.isUnit_or_isUnit
pow_succ'
Irreducible.not_isUnit
isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid
add_comm
Associated.trans

IsDiscreteValuationRing.RingEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscreteValuationRing πŸ“–mathematicalβ€”IsDiscreteValuationRingβ€”RingEquiv.isLocalRing
IsDiscreteValuationRing.toIsLocalRing
isPrincipalIdealRing_iff
IsPrincipalIdealRing.of_surjective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsDiscreteValuationRing.toIsPrincipalIdealRing
RingEquiv.surjective
Submodule.nonzero_mem_of_bot_lt
bot_lt_iff_ne_bot
IsDiscreteValuationRing.not_a_field
Submodule.ne_bot_iff
IsLocalRing.mem_maximalIdeal
map_mem_nonunits_iff
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
isLocalHom_equiv
RingEquivClass.toMulEquivClass
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass

Valuation.Integers

Theorems

NameKindAssumesProvesValidatesDepends On
maximalIdeal_eq_setOf_le_v_algebraMap πŸ“–mathematicalValuation.Integers
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
IsDiscreteValuationRing.toIsLocalRing
Function.Injective.isDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instIsDomain
RingHom
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
algebraMap
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
β€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsDiscreteValuationRing.toIsLocalRing
coe_span_singleton_eq_setOf_le_v_algebraMap
Irreducible.maximalIdeal_eq
maximalIdeal_pow_eq_setOf_le_v_algebraMap_pow πŸ“–mathematicalValuation.Integers
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsLocalRing.maximalIdeal
IsDiscreteValuationRing.toIsLocalRing
Function.Injective.isDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instIsDomain
RingHom
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
algebraMap
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DFunLike.coe
Valuation
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
Monoid.toNatPow
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
IsScalarTower.right
IsDiscreteValuationRing.toIsLocalRing
coe_span_singleton_eq_setOf_le_v_algebraMap
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
Irreducible.maximalIdeal_eq

(root)

Definitions

NameCategoryTheorems
IsDiscreteValuationRing πŸ“–CompData
18 mathmath: IsDiscreteValuationRing.ofHasUnitMulPowIrreducibleFactorization, IsLocalRing.finrank_CotangentSpace_eq_one_iff, Valued.integer.compactSpace_iff_completeSpace_and_isDiscreteValuationRing_and_finite_residueField, instIsDiscreteValuationRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, IsNonarchimedeanLocalField.instIsDiscreteValuationRingSubtypeMemSubringIntegerValueGroupWithZeroValuation, PadicInt.instIsDiscreteValuationRing, IsLocalization.AtPrime.isDiscreteValuationRing_of_dedekind_domain, Valuation.valuationSubring_isDiscreteValuationRing, WittVector.isDiscreteValuationRing, Valued.integer.properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField, IsDedekindDomainDvr.is_dvr_at_nonzero_prime, IsDiscreteValuationRing.RingEquivClass.isDiscreteValuationRing, PowerSeries.instIsDiscreteValuationRing, Valued.integer.isDiscreteValuationRing_of_compactSpace, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, IsDiscreteValuationRing.TFAE, IsDiscreteValuationRing.iff_pid_with_one_nonzero_prime, IsDiscreteValuationRing.of_ufd_of_unique_irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
of_isDiscreteValuationRing πŸ“–mathematicalβ€”ValuationRingβ€”ValuationRing.instOfIsLocalRingOfIsBezout
IsDiscreteValuationRing.toIsLocalRing
IsBezout.of_isPrincipalIdealRing
IsDiscreteValuationRing.toIsPrincipalIdealRing

---

← Back to Index