Documentation Verification Report

Discriminant

πŸ“ Source: Mathlib/RingTheory/Discriminant.lean

Statistics

MetricCount
Definitionsdiscr
1
Theoremsdiscr_def, discr_eq_det_embeddingsMatrixReindex_pow_two, discr_eq_discr, discr_eq_discr_of_algEquiv, discr_isIntegral, discr_isUnit_of_basis, discr_mul_isIntegral_mem_adjoin, discr_not_zero_of_basis, discr_of_matrix_mulVec, discr_of_matrix_vecMul, discr_powerBasis_eq_norm, discr_powerBasis_eq_prod, discr_powerBasis_eq_prod', discr_powerBasis_eq_prod'', discr_reindex, discr_zero_of_not_linearIndependent
16
Total17

Algebra

Definitions

NameCategoryTheorems
discr πŸ“–CompOp
30 mathmath: IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow, IsCyclotomicExtension.discr_odd_prime, discr_eq_discr, IsCyclotomicExtension.Rat.discr_prime_pow', discr_powerBasis_eq_norm, discr_eq_discr_of_toMatrix_coeff_isIntegral, discr_eq_discr_of_algEquiv, IsPrimitiveRoot.discr_zeta_eq_discr_zeta_sub_one, NumberField.discr_eq_discr, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', discr_of_matrix_mulVec, IsCyclotomicExtension.discr_prime_pow_ne_two, discr_of_matrix_vecMul, discr_mul_isIntegral_mem_adjoin, isIntegral_discr_mul_of_mem_traceDual, discr_powerBasis_eq_prod, discr_def, discr_isUnit_of_basis, discr_eq_det_embeddingsMatrixReindex_pow_two, discr_localizationLocalization, discr_powerBasis_eq_prod'', discr_powerBasis_eq_prod', IsCyclotomicExtension.Rat.discr_odd_prime', NumberField.coe_discr, discr_zero_of_not_linearIndependent, discr_isIntegral, IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow', IsCyclotomicExtension.discr_prime_pow, IsCyclotomicExtension.discr_prime_pow_ne_two', discr_reindex

Theorems

NameKindAssumesProvesValidatesDepends On
discr_def πŸ“–mathematicalβ€”discr
Matrix.det
traceMatrix
β€”β€”
discr_eq_det_embeddingsMatrixReindex_pow_two πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
discr
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.det
embeddingsMatrixReindex
β€”discr_def
RingHom.map_det
RingHom.mapMatrix_apply
traceMatrix_eq_embeddingsMatrixReindex_mul_trans
Matrix.det_mul
Matrix.det_transpose
pow_two
discr_eq_discr πŸ“–mathematicalβ€”discr
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
DFunLike.coe
Module.Basis
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
Module.Basis.instFunLike
β€”Module.Basis.toMatrix_map_vecMul
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
LinearMap.toMatrix_id_eq_basis_toMatrix
LinearEquiv.isUnit_det
sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.isUnit_iff
one_mul
discr_of_matrix_vecMul
discr_eq_discr_of_algEquiv πŸ“–mathematicalβ€”discr
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
β€”discr_def
Matrix.ext
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
trace_eq_of_algEquiv
discr_isIntegral πŸ“–mathematicalIsIntegral
DivisionRing.toRing
Field.toDivisionRing
discr
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”discr_def
IsIntegral.det
isIntegral_trace
IsIntegral.mul
discr_isUnit_of_basis πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
discr
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
Module.Basis
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
Semifield.toCommSemiring
Module.Basis.instFunLike
β€”discr_not_zero_of_basis
discr_mul_isIntegral_mem_adjoin πŸ“–mathematicalIsIntegral
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subalgebra
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
toSMul
Semifield.toCommSemiring
discr
PowerBasis.dim
Fin.fintype
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toModule
Ring.toSemiring
Module.Basis.instFunLike
PowerBasis.basis
β€”Matrix.det.congr_simp
PowerBasis.coe_basis
discr.congr_simp
discr_isUnit_of_basis
RingHomInvPair.ids
Finite.of_fintype
traceMatrix_of_basis_mulVec
Matrix.mulVec_cramer
Matrix.mulVec_smul
to_smulCommClass
Matrix.one_mulVec
Matrix.nonsing_inv_mul
Matrix.mulVec_mulVec
Matrix.cramer_apply
Matrix.det_apply
Subalgebra.sum_mem
Subalgebra.zsmul_mem
Subalgebra.prod_mem
Matrix.updateCol.congr_simp
Matrix.updateCol_apply
mem_bot
IsIntegrallyClosed.isIntegral_iff
isIntegral_trace
IsIntegral.mul
IsIntegral.pow
Module.Basis.sum_repr
Finset.smul_sum
Pi.smul_apply
discr_def
smul_assoc
IsScalarTower.left
Module.Basis.equivFun_apply
algebraMap_smul
Subalgebra.smul_mem
PowerBasis.basis_eq_pow
Subalgebra.pow_mem
subset_adjoin
Set.mem_singleton
discr_not_zero_of_basis πŸ“–β€”β€”β€”β€”discr_def
RingHomInvPair.ids
to_smulCommClass
LinearMap.instSMulCommClass
traceMatrix_of_basis
LinearMap.BilinForm.nondegenerate_iff_det_ne_zero
instIsDomain
traceForm_nondegenerate
discr_of_matrix_mulVec πŸ“–mathematicalβ€”discr
Matrix.mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Matrix.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.det
β€”discr_def
traceMatrix_of_matrix_mulVec
Matrix.det_mul
Matrix.det_transpose
mul_comm
mul_assoc
pow_two
discr_of_matrix_vecMul πŸ“–mathematicalβ€”discr
Matrix.vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Matrix.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.det
β€”discr_def
traceMatrix_of_matrix_vecMul
Matrix.det_mul
Matrix.det_transpose
mul_comm
mul_assoc
pow_two
discr_powerBasis_eq_norm πŸ“–mathematicalβ€”discr
PowerBasis.dim
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Fin.fintype
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toModule
Ring.toSemiring
Module.Basis.instFunLike
PowerBasis.basis
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Module.finrank
Semifield.toCommSemiring
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
norm
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
id
AlgHom.funLike
Polynomial.aeval
PowerBasis.gen
LinearMap
RingHom.id
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
minpoly
β€”instIsDomain
Fintype.card_fin
AlgHom.card
AlgebraicClosure.isAlgClosed
PowerBasis.finrank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.nodup_roots
Polynomial.Separable.map
IsSeparable.isSeparable
Polynomial.mem_roots
DivisionRing.isSimpleRing
minpoly.ne_zero
PowerBasis.isIntegral_gen
Polynomial.IsRoot.def
Polynomial.eval_map_algebraMap
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
minpoly.aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
RingHom.injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
map_neg
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
discr_powerBasis_eq_prod''
norm_eq_prod_embeddings
Finset.prod_prod_Ioi_mul_eq_prod_prod_off_diag
Multiset.Nodup.erase
Polynomial.derivative_map
Polynomial.Splits.eval_root_derivative
IsAlgClosed.splits
Polynomial.Monic.map
minpoly.monic
Finset.prod_sigma'
Finset.prod_bij'
Polynomial.evalβ‚‚_eq_eval_map
Multiset.Nodup.mem_erase_iff
Equiv.injective
PowerBasis.algHom_ext
Equiv.apply_symm_apply
PowerBasis.lift_gen
Equiv.symm_apply_apply
discr_powerBasis_eq_prod πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
discr
PowerBasis.dim
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Fin.fintype
Module.Basis
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toModule
Ring.toSemiring
Module.Basis.instFunLike
PowerBasis.basis
Finset.prod
CommRing.toCommMonoid
Finset.univ
Finset.Ioi
PartialOrder.toPreorder
Fin.instPartialOrder
Fin.instLocallyFiniteOrderTop
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AlgHom
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
PowerBasis.gen
β€”discr_eq_det_embeddingsMatrixReindex_pow_two
embeddingsMatrixReindex_eq_vandermonde
Matrix.det_transpose
Matrix.det_vandermonde
Finset.prod_pow
discr_powerBasis_eq_prod' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
discr
PowerBasis.dim
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Fin.fintype
Module.Basis
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toModule
Ring.toSemiring
Module.Basis.instFunLike
PowerBasis.basis
Finset.prod
CommRing.toCommMonoid
Finset.univ
Finset.Ioi
PartialOrder.toPreorder
Fin.instPartialOrder
Fin.instLocallyFiniteOrderTop
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AlgHom
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
PowerBasis.gen
β€”discr_powerBasis_eq_prod
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
discr_powerBasis_eq_prod'' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
discr
PowerBasis.dim
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Fin.fintype
Module.Basis
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toModule
Ring.toSemiring
Module.Basis.instFunLike
PowerBasis.basis
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Module.finrank
Finset.prod
CommRing.toCommMonoid
Finset.univ
Finset.Ioi
PartialOrder.toPreorder
Fin.instPartialOrder
Fin.instLocallyFiniteOrderTop
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AlgHom
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
PowerBasis.gen
β€”discr_powerBasis_eq_prod'
Finset.prod_congr
neg_eq_neg_one_mul
Finset.prod_mul_distrib
Finset.prod_const
Finset.prod_pow_eq_pow_sum
Rat.instCharZero
Nat.cast_sum
Nat.instNoMaxOrder
Finset.sum_congr
Fin.card_Ioi
add_comm
Nat.cast_sub
Nat.cast_add
Nat.cast_one
Finset.sum_sub_distrib
Finset.sum_const
Finset.card_fin
nsmul_eq_mul
Finset.sum_add_distrib
mul_one
Finset.sum_range
Finset.sum_range_id
instIsDomain
AlgHom.card
Fintype.card_fin
Fintype.card_congr
Even.two_dvd
Nat.even_mul_pred_self
Nat.instAtLeastTwoHAddOfNat
zero_lt_iff
Module.finrank_pos_iff
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Nat.cast_div
Nat.cast_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.neg_mul
discr_reindex πŸ“–mathematicalβ€”discr
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
Module.Basis.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”Module.Basis.coe_reindex
discr_def
traceMatrix_reindex
Matrix.det_reindex_self
discr_zero_of_not_linearIndependent πŸ“–mathematicalLinearIndependent
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
discr
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Fintype.not_linearIndependent_iff
mul_comm
mul_smul_comm
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
MulZeroClass.zero_mul
map_zero
AddMonoidHomClass.toZeroHomClass
Matrix.eq_zero_of_mulVec_eq_zero
discr_def

---

← Back to Index