Documentation Verification Report

SubDPIdeal

πŸ“ Source: Mathlib/RingTheory/DividedPowers/SubDPIdeal.lean

Statistics

MetricCount
Definitionsker, IsSubDPIdeal, dividedPowers, dividedPowers, dpow, dividedPowers, dpow, SubDPIdeal, carrier, inhabited, instBot, instCoeOutElemIdealIic, instCoeOutIdeal, instCompleteLattice, instInfSet, instLE, instLT, instMax, instMin, instPartialOrder, instSetLike, instSupSet, instTop, mk', prod, span, toIdeal, dpEqualizer, subDPIdeal_inf_of_quot
29
Theoremsdpow_eq, dpow_eq_of_mem, dpow_mem, isDPMorphism, isSubideal, self, dividedPowers_unique, dpow_apply, dpow_apply', dpow_def, isDPMorphism, dividedPowers_unique, dpow_apply, isDPMorphism, coe_def, dpow_mem, dpow_mem_span_of_mem_span, ext, ext_iff, inf_carrier_def, isSubideal, le_iff, lt_iff, memCarrier, sInf_carrier_def, sSup_carrier_def, span_carrier_eq_dpow_span, sup_carrier_def, toIsSubDPIdeal, dpEqualizer_is_dp_ideal_left, dpEqualizer_is_dp_ideal_right, dpow_span_isSubideal, isSubDPIdeal_iInf, isSubDPIdeal_iSup, isSubDPIdeal_inf_iff, isSubDPIdeal_ker, isSubDPIdeal_map, isSubDPIdeal_map_of_isSubDPIdeal, isSubDPIdeal_sup, le_equalizer_of_isDPMorphism, mem_dpEqualizer_iff, span_isSubDPIdeal_iff
42
Total71

DividedPowers

Definitions

NameCategoryTheorems
IsSubDPIdeal πŸ“–CompData
8 mathmath: isSubDPIdeal_map, dpEqualizer_is_dp_ideal_left, isSubDPIdeal_ker, span_isSubDPIdeal_iff, dpEqualizer_is_dp_ideal_right, isSubDPIdeal_inf_iff, IsSubDPIdeal.self, SubDPIdeal.toIsSubDPIdeal
SubDPIdeal πŸ“–CompData
7 mathmath: SubDPIdeal.sInf_carrier_def, SubDPIdeal.le_iff, SubDPIdeal.inf_carrier_def, SubDPIdeal.sSup_carrier_def, SubDPIdeal.memCarrier, SubDPIdeal.sup_carrier_def, SubDPIdeal.lt_iff
dpEqualizer πŸ“–CompOp
4 mathmath: mem_dpEqualizer_iff, dpEqualizer_is_dp_ideal_left, le_equalizer_of_isDPMorphism, dpEqualizer_is_dp_ideal_right
subDPIdeal_inf_of_quot πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
dpEqualizer_is_dp_ideal_left πŸ“–mathematicalβ€”IsSubDPIdeal
dpEqualizer
β€”dpow_mem
dpow_comp
dpEqualizer_is_dp_ideal_right πŸ“–mathematicalβ€”IsSubDPIdeal
dpEqualizer
β€”dpow_mem
dpow_comp
dpow_span_isSubideal πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal.span
setOf
Set.instMembership
dpow
β€”Ideal.span_le
dpow_mem
isSubDPIdeal_iInf πŸ“–mathematicalIsSubDPIdealIdeal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iInf
Submodule.instInfSet
β€”isEmpty_or_nonempty
iInf_of_empty
inf_of_le_left
IsSubDPIdeal.self
dpow_mem
IsSubDPIdeal.dpow_mem
isSubDPIdeal_iSup πŸ“–mathematicalIsSubDPIdealiSup
Ideal
CommSemiring.toSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.iSup_eq_span
span_isSubDPIdeal_iff
Set.iUnion_subset_iff
IsSubDPIdeal.isSubideal
Ideal.span_mono
Set.subset_iUnion
Ideal.subset_span
IsSubDPIdeal.dpow_mem
isSubDPIdeal_inf_iff πŸ“–mathematicalβ€”IsSubDPIdeal
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
dpow
β€”Ideal.sub_mem
add_sub_cancel
dpow_add'
Finset.range_add_one
Finset.sum_insert
Finset.notMem_range_self
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
dpow_zero
mul_one
add_sub_cancel_left
Submodule.sum_mem
SemilatticeInf.inf_le_left
Submodule.smul_mem
IsSubDPIdeal.dpow_mem
ne_of_gt
Finset.mem_range
SemilatticeInf.inf_le_right
sub_zero
dpow_eval_zero
Ideal.zero_mem
dpow_mem
isSubDPIdeal_ker πŸ“–mathematicalIsDPMorphism
CommRing.toCommSemiring
IsSubDPIdeal
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
isSubDPIdeal_inf_iff
isSubDPIdeal_map πŸ“–mathematicalIsDPMorphismIsSubDPIdeal
Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
β€”isSubDPIdeal_map_of_isSubDPIdeal
IsSubDPIdeal.self
isSubDPIdeal_map_of_isSubDPIdeal πŸ“–mathematicalIsDPMorphism
IsSubDPIdeal
Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
β€”Ideal.map.eq_1
span_isSubDPIdeal_iff
IsDPMorphism.ideal_comp
Ideal.mem_map_of_mem
IsSubDPIdeal.isSubideal
IsSubDPIdeal.dpow_mem
IsDPMorphism.dpow_comp
isSubDPIdeal_sup πŸ“–mathematicalIsSubDPIdealIdeal
CommSemiring.toSemiring
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
β€”Ideal.span_eq
Ideal.span_union
span_isSubDPIdeal_iff
Set.union_subset_iff
IsSubDPIdeal.isSubideal
Ideal.span_mono
Set.subset_union_left
Ideal.subset_span
IsSubDPIdeal.dpow_mem
Set.subset_union_right
le_equalizer_of_isDPMorphism πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
IsDPMorphism
dpEqualizerβ€”Ideal.map.eq_1
Ideal.span_le
Ideal.mem_map_of_mem
IsDPMorphism.dpow_comp
mem_dpEqualizer_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
dpEqualizer
dpow
β€”β€”
span_isSubDPIdeal_iff πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsSubDPIdeal
Ideal.span
SetLike.instMembership
dpow
β€”IsSubDPIdeal.dpow_mem
Ideal.subset_span
Ideal.span_le
Submodule.span_induction
dpow_eval_zero
Ideal.zero_mem
dpow_add'
Submodule.sum_mem
Ideal.mul_mem_left
Ideal.mul_mem_right
Ideal.instIsTwoSided
smul_eq_mul
dpow_mul

DividedPowers.DPMorphism

Definitions

NameCategoryTheorems
ker πŸ“–CompOpβ€”

DividedPowers.IsSubDPIdeal

Definitions

NameCategoryTheorems
dividedPowers πŸ“–CompOp
3 mathmath: dpow_eq_of_mem, isDPMorphism, dpow_eq

Theorems

NameKindAssumesProvesValidatesDepends On
dpow_eq πŸ“–mathematicalDividedPowers.IsSubDPIdealDividedPowers.dpow
dividedPowers
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
dpow_eq_of_mem πŸ“–mathematicalDividedPowers.IsSubDPIdeal
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DividedPowers.dpow
dividedPowers
β€”dpow_eq
dpow_mem πŸ“–mathematicalDividedPowers.IsSubDPIdeal
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DividedPowers.dpowβ€”β€”
isDPMorphism πŸ“–mathematicalDividedPowers.IsSubDPIdealDividedPowers.IsDPMorphism
dividedPowers
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”Ideal.map_id
isSubideal
dpow_eq_of_mem
isSubideal πŸ“–mathematicalDividedPowers.IsSubDPIdealIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
self πŸ“–mathematicalβ€”DividedPowers.IsSubDPIdealβ€”le_rfl
DividedPowers.dpow_mem

DividedPowers.Quotient

Definitions

NameCategoryTheorems
dividedPowers πŸ“–CompOp
3 mathmath: isDPMorphism, dpow_apply, dividedPowers_unique
dpow πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
dividedPowers_unique πŸ“–mathematicalDividedPowers.IsSubDPIdeal
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DividedPowers.IsDPMorphism
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.commSemiring
Ideal.map
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
dividedPowersβ€”Ideal.instIsTwoSided_1
OfSurjective.dividedPowers_unique
Ideal.Quotient.mk_surjective
refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
eq_isEquiv
dpow_apply πŸ“–mathematicalDividedPowers.IsSubDPIdeal
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
DividedPowers.dpow
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.commSemiring
Ideal.map
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
dividedPowers
DFunLike.coe
β€”OfSurjective.dpow_apply
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
eq_isEquiv
isDPMorphism πŸ“–mathematicalDividedPowers.IsSubDPIdeal
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DividedPowers.IsDPMorphism
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.commSemiring
Ideal.map
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
dividedPowers
β€”OfSurjective.isDPMorphism
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
eq_isEquiv

DividedPowers.Quotient.OfSurjective

Definitions

NameCategoryTheorems
dividedPowers πŸ“–CompOp
4 mathmath: dpow_def, isDPMorphism, dividedPowers_unique, dpow_apply
dpow πŸ“–CompOp
2 mathmath: dpow_def, dpow_apply'

Theorems

NameKindAssumesProvesValidatesDepends On
dividedPowers_unique πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal.map
DividedPowers.IsSubDPIdeal
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
DividedPowers.IsDPMorphism
dividedPowersβ€”RingHom.instRingHomClass
DividedPowers.ext
Ideal.mem_map_iff_of_surjective
DividedPowers.IsDPMorphism.dpow_comp
dpow_apply
dpow_apply πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal.map
DividedPowers.IsSubDPIdeal
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
SetLike.instMembership
Submodule.setLike
DividedPowers.dpow
dividedPowers
β€”RingHom.instRingHomClass
dpow_def
dpow_apply'
dpow_apply' πŸ“–mathematicalDividedPowers.IsSubDPIdeal
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
SetLike.instMembership
Submodule.setLike
dpow
DFunLike.coe
DividedPowers.dpow
β€”RingHom.instRingHomClass
Function.extend_def
sub_eq_zero
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.mem_ker
DividedPowers.isSubDPIdeal_inf_iff
Submodule.coe_mem
dpow_def πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal.map
DividedPowers.IsSubDPIdeal
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
DividedPowers.dpow
dividedPowers
dpow
β€”RingHom.instRingHomClass
isDPMorphism πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal.map
DividedPowers.IsSubDPIdeal
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
DividedPowers.IsDPMorphism
dividedPowers
β€”RingHom.instRingHomClass
le_of_eq
dpow_apply

DividedPowers.SubDPIdeal

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
12 mathmath: sInf_carrier_def, le_iff, ext_iff, isSubideal, inf_carrier_def, sSup_carrier_def, memCarrier, span_carrier_eq_dpow_span, sup_carrier_def, lt_iff, coe_def, toIsSubDPIdeal
inhabited πŸ“–CompOpβ€”
instBot πŸ“–CompOpβ€”
instCoeOutElemIdealIic πŸ“–CompOpβ€”
instCoeOutIdeal πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
1 mathmath: sInf_carrier_def
instLE πŸ“–CompOp
1 mathmath: le_iff
instLT πŸ“–CompOp
1 mathmath: lt_iff
instMax πŸ“–CompOp
1 mathmath: sup_carrier_def
instMin πŸ“–CompOp
1 mathmath: inf_carrier_def
instPartialOrder πŸ“–CompOpβ€”
instSetLike πŸ“–CompOp
1 mathmath: memCarrier
instSupSet πŸ“–CompOp
1 mathmath: sSup_carrier_def
instTop πŸ“–CompOp
1 mathmath: sInf_carrier_def
mk' πŸ“–CompOpβ€”
prod πŸ“–CompOpβ€”
span πŸ“–CompOp
1 mathmath: span_carrier_eq_dpow_span
toIdeal πŸ“–CompOp
2 mathmath: sSup_carrier_def, coe_def

Theorems

NameKindAssumesProvesValidatesDepends On
coe_def πŸ“–mathematicalβ€”toIdeal
carrier
β€”β€”
dpow_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
carrier
DividedPowers.dpowβ€”β€”
dpow_mem_span_of_mem_span πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Ideal.span
setOf
Set.instMembership
DividedPowers.dpow
β€”β€”DividedPowers.dpow_span_isSubideal
Submodule.span_induction
DividedPowers.dpow_comp
Ideal.mul_mem_left
Ideal.subset_span
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
DividedPowers.dpow_eval_zero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
DividedPowers.dpow_add'
Submodule.sum_mem
Ideal.mul_mem_right
Ideal.instIsTwoSided
smul_eq_mul
DividedPowers.dpow_mul
ext πŸ“–β€”carrierβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”carrierβ€”ext
inf_carrier_def πŸ“–mathematicalβ€”carrier
DividedPowers.SubDPIdeal
instMin
Ideal
CommSemiring.toSemiring
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
isSubideal πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
carrier
β€”β€”
le_iff πŸ“–mathematicalβ€”DividedPowers.SubDPIdeal
instLE
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
carrier
β€”β€”
lt_iff πŸ“–mathematicalβ€”DividedPowers.SubDPIdeal
instLT
Ideal
CommSemiring.toSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
carrier
β€”β€”
memCarrier πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
carrier
DividedPowers.SubDPIdeal
instSetLike
β€”β€”
sInf_carrier_def πŸ“–mathematicalβ€”carrier
InfSet.sInf
DividedPowers.SubDPIdeal
instInfSet
iInf
Ideal
CommSemiring.toSemiring
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
Set.instInsert
Top.top
instTop
β€”β€”
sSup_carrier_def πŸ“–mathematicalβ€”carrier
SupSet.sSup
DividedPowers.SubDPIdeal
instSupSet
Ideal
CommSemiring.toSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.image
toIdeal
β€”β€”
span_carrier_eq_dpow_span πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
carrier
span
Ideal.span
setOf
Set.instMembership
DividedPowers.dpow
β€”DividedPowers.dpow_span_isSubideal
dpow_mem_span_of_mem_span
le_antisymm
Set.mem_insert_of_mem
Ideal.subset_span
one_ne_zero
DividedPowers.dpow_one
sInf_le_of_le
iInf_congr_Prop
ciInf_pos
le_refl
le_iInfβ‚‚_iff
Ideal.span_le
dpow_mem
sup_carrier_def πŸ“–mathematicalβ€”carrier
DividedPowers.SubDPIdeal
instMax
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
Set.Iic
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
isSubideal
β€”β€”
toIsSubDPIdeal πŸ“–mathematicalβ€”DividedPowers.IsSubDPIdeal
carrier
β€”isSubideal
dpow_mem

---

← Back to Index