Documentation Verification Report

DualNumber

πŸ“ Source: Mathlib/RingTheory/DualNumber.lean

Statistics

MetricCount
Definitions0
Theoremsexists_mul_left_or_mul_right, fst_eq_zero_iff_eps_dvd, ideal_trichotomy, instIsLocalRing, instIsPrincipalIdealRing, isMaximal_span_singleton_eps, isNilpotent_eps, isNilpotent_iff_eps_dvd, maximalIdeal_eq_span_singleton_eps, isNilpotent_iff_isNilpotent_fst, isNilpotent_inl_iff, isNilpotent_inr, isUnit_or_isNilpotent, isUnit_or_isNilpotent_of_isMaximal_isNilpotent
14
Total14

DualNumber

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mul_left_or_mul_right πŸ“–mathematicalβ€”DualNumber
TrivSqZeroExt.mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Distrib.toAdd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
MulOpposite
DistribMulAction.toDistribSMul
MulOpposite.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
MulOpposite.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toOppositeModule
β€”SMulCommClass.opposite_mid
IsScalarTower.left
TrivSqZeroExt.isUnit_or_isNilpotent
CanLift.prf
instCanLiftUnitsValIsUnit
Units.mul_inv_cancel_left
isNilpotent_iff_eps_dvd
eq_or_ne
MulZeroClass.mul_zero
TrivSqZeroExt.inl_mul
mul_inv_cancelβ‚€
one_mul
MulZeroClass.zero_mul
zero_add
fst_eq_zero_iff_eps_dvd πŸ“–mathematicalβ€”TrivSqZeroExt.fst
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DualNumber
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
TrivSqZeroExt.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
eps
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”SMulCommClass.opposite_mid
IsScalarTower.left
MulZeroClass.zero_mul
zero_smul
zero_add
one_mul
ideal_trichotomy πŸ“–mathematicalβ€”Bot.bot
Ideal
DualNumber
TrivSqZeroExt.semiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
Submodule.instBot
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ideal.span
Set
Set.instSingletonSet
eps
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Top.top
Submodule.instTop
β€”SMulCommClass.opposite_mid
IsScalarTower.left
TrivSqZeroExt.isUnit_or_isNilpotent
Ideal.eq_top_of_isUnit_mem
isNilpotent_iff_eps_dvd
TrivSqZeroExt.ext
MulZeroClass.zero_mul
MulZeroClass.mul_zero
one_mul
zero_add
mul_one
Mathlib.Tactic.Contrapose.contraposeβ‚„
zero_smul
inv_mul_cancelβ‚€
smul_neg
neg_zero
add_zero
le_antisymm
Commute.eq
commute_eps_right
Submodule.exists_mem_ne_zero_of_ne_bot
commute_eps_left
mul_assoc
Ideal.mul_mem_left
eq_or_ne
instIsLocalRing πŸ“–mathematicalβ€”IsLocalRing
DualNumber
TrivSqZeroExt.semiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
β€”SMulCommClass.opposite_mid
IsScalarTower.left
TrivSqZeroExt.instNontrivial_of_right
Nontrivial.to_nonempty
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
eq_or_ne
eq_sub_iff_add_eq
add_comm
sub_zero
NeZero.one
instIsPrincipalIdealRing πŸ“–mathematicalβ€”IsPrincipalIdealRing
DualNumber
TrivSqZeroExt.semiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
β€”SMulCommClass.opposite_mid
IsScalarTower.left
ideal_trichotomy
bot_isPrincipal
top_isPrincipal
isMaximal_span_singleton_eps πŸ“–mathematicalβ€”Ideal.IsMaximal
DualNumber
TrivSqZeroExt.semiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
Ideal.span
Set
Set.instSingletonSet
eps
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”SMulCommClass.opposite_mid
IsScalarTower.left
MulZeroClass.mul_zero
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mul_one
zero_smul
add_zero
Nontrivial.to_nonempty
TrivSqZeroExt.instNontrivial_of_right
ideal_trichotomy
isNilpotent_eps πŸ“–mathematicalβ€”IsNilpotent
DualNumber
TrivSqZeroExt.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
TrivSqZeroExt.instPowNatOfDistribMulActionMulOpposite
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
MulOpposite
MulOpposite.instSemiring
Semiring.toOppositeModule
eps
AddMonoidWithOne.toOne
β€”TrivSqZeroExt.isNilpotent_inr
SMulCommClass.opposite_mid
IsScalarTower.left
isNilpotent_iff_eps_dvd πŸ“–mathematicalβ€”IsNilpotent
DualNumber
TrivSqZeroExt.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
TrivSqZeroExt.instPowNatOfDistribMulActionMulOpposite
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
MulOpposite
MulOpposite.instSemiring
Semiring.toOppositeModule
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
TrivSqZeroExt.semiring
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
IsScalarTower.left
DistribMulAction.toMulAction
eps
AddMonoidWithOne.toOne
β€”SMulCommClass.opposite_mid
IsScalarTower.left
isReduced_of_noZeroDivisors
GroupWithZero.noZeroDivisors
maximalIdeal_eq_span_singleton_eps πŸ“–mathematicalβ€”IsLocalRing.maximalIdeal
DualNumber
TrivSqZeroExt.commSemiring
Semifield.toCommSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
CommSemiring.toSemiring
Semiring.toOppositeModule
CommSemigroup.isCentralScalar
NonUnitalCommSemiring.toCommSemigroup
NonUnitalCommRing.toNonUnitalCommSemiring
instIsLocalRing
Field.toDivisionRing
Ideal.span
Set
Set.instSingletonSet
eps
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”CommSemigroup.isCentralScalar
instIsLocalRing
IsLocalRing.eq_maximalIdeal
isMaximal_span_singleton_eps

TrivSqZeroExt

Theorems

NameKindAssumesProvesValidatesDepends On
isNilpotent_iff_isNilpotent_fst πŸ“–mathematicalβ€”IsNilpotent
TrivSqZeroExt
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instPowNatOfDistribMulActionMulOpposite
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulOpposite
MulOpposite.instSemiring
Monoid.toNatPow
fst
β€”fst_pow
fst_zero
pow_mul
ext
zero_pow
two_ne_zero
pow_two
snd_mul
MulOpposite.op_zero
zero_smul
zero_add
snd_zero
isNilpotent_inl_iff πŸ“–mathematicalβ€”IsNilpotent
TrivSqZeroExt
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instPowNatOfDistribMulActionMulOpposite
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulOpposite
MulOpposite.instSemiring
inl
Monoid.toNatPow
β€”isNilpotent_iff_isNilpotent_fst
fst_inl
isNilpotent_inr πŸ“–mathematicalβ€”IsNilpotent
TrivSqZeroExt
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instPowNatOfDistribMulActionMulOpposite
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulOpposite
MulOpposite.instSemiring
inr
β€”pow_two
inr_mul_inr
isUnit_or_isNilpotent πŸ“–mathematicalβ€”IsUnit
TrivSqZeroExt
monoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
MulOpposite
MulOpposite.instSemiring
IsNilpotent
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instPowNatOfDistribMulActionMulOpposite
β€”isReduced_of_noZeroDivisors
GroupWithZero.noZeroDivisors
isUnit_or_isNilpotent_of_isMaximal_isNilpotent πŸ“–mathematicalIsNilpotent
Ideal
CommSemiring.toSemiring
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsUnit
TrivSqZeroExt
monoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
MulOpposite
MulOpposite.instSemiring
IsScalarTower.to_smulCommClass
MulOpposite.instAlgebra
IsScalarTower.op_right
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Algebra.toSMul
IsScalarTower.left
DistribMulAction.toMulAction
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instPowNatOfDistribMulActionMulOpposite
β€”IsScalarTower.right
IsScalarTower.to_smulCommClass
IsScalarTower.op_right
IsScalarTower.left
isUnit_iff_isUnit_fst
isNilpotent_iff_isNilpotent_fst
exists_max_ideal_of_mem_nonunits
mem_nonunits_iff
Eq.le
Ideal.pow_mem_pow
em

---

← Back to Index