Documentation Verification Report

Field

📁 Source: Mathlib/RingTheory/Etale/Field.lean

Statistics

MetricCount
Definitions0
Theoremsiff_exists_algEquiv_prod, iff_exists_algEquiv_prod, iff_formallyUnramified_of_field, iff_isSeparable, of_formallyUnramified_of_field, of_isSeparable, of_isSeparable_aux
7
Total7

Algebra.Etale

Theorems

NameKindAssumesProvesValidatesDepends On
iff_exists_algEquiv_prod 📖mathematicalAlgebra.Etale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.Finite
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
Algebra.IsSeparable
DivisionRing.toRing
Field.toDivisionRing
Algebra.FormallyEtale.iff_exists_algEquiv_prod
Algebra.EssFiniteType.of_finiteType
Algebra.FiniteType.of_finitePresentation
finitePresentation
formallyEtale
Algebra.FormallyUnramified.finite_of_free
Algebra.FormallyEtale.instFormallyUnramified
Module.Free.of_divisionRing
Module.Finite.of_surjective
RingHomSurjective.ids
RingHomCompTriple.ids
Function.surjective_eval
Nontrivial.to_nonempty
IsLocalRing.toNontrivial
Field.instIsLocalRing
AlgEquiv.surjective
FiniteDimensional.finiteDimensional_pi'
Module.Finite.finiteType
Algebra.FinitePresentation.of_finiteType
IsSimpleModule.instIsNoetherian
instIsSimpleModule

Algebra.FormallyEtale

Theorems

NameKindAssumesProvesValidatesDepends On
iff_exists_algEquiv_prod 📖mathematicalAlgebra.FormallyEtale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.IsSeparable
DivisionRing.toRing
Field.toDivisionRing
Algebra.FormallyUnramified.finite_of_free
instFormallyUnramified
Module.Free.of_divisionRing
Algebra.FormallyUnramified.isReduced_of_field
isArtinian_of_tower
IsScalarTower.right
isArtinian_of_fg_of_artinian'
DivisionRing.instIsArtinianRing
IsArtinianRing.instFiniteMaximalSpectrum
Pi.isScalarTower
Ideal.Quotient.isScalarTower
iff_isSeparable
Algebra.instEssFiniteTypeQuotientIdeal
pi_iff
iff_of_equiv
of_isSeparable
iff_formallyUnramified_of_field 📖mathematicalAlgebra.FormallyEtale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.FormallyUnramified
instFormallyUnramified
of_formallyUnramified_of_field
iff_isSeparable 📖mathematicalAlgebra.FormallyEtale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.IsSeparable
DivisionRing.toRing
Field.toDivisionRing
Algebra.FormallyUnramified.isSeparable
instFormallyUnramified
of_isSeparable
of_formallyUnramified_of_field 📖mathematicalAlgebra.FormallyEtale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.FormallyUnramified.isReduced_of_field
IsArtinianRing.of_finite
IsScalarTower.right
isArtinian_of_fg_of_artinian'
DivisionRing.instIsArtinianRing
Algebra.FormallyUnramified.finite_of_free
Algebra.FormallyUnramified.inst
Algebra.EssFiniteType.of_finiteType
Algebra.FiniteType.of_finitePresentation
Algebra.FinitePresentation.self
Module.Free.self
Module.Free.of_divisionRing
MaximalSpectrum.isMaximal
iff_isSeparable
Algebra.instEssFiniteTypeQuotientIdeal
Algebra.FormallyUnramified.iff_isSeparable
Algebra.FormallyUnramified.quotient
of_equiv
instForallOfFinite
IsArtinianRing.instFiniteMaximalSpectrum
Pi.isScalarTower
Ideal.Quotient.isScalarTower
of_isSeparable 📖mathematicalAlgebra.FormallyEtale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ideal.instIsTwoSided_1
iff_comp_bijective
Algebra.FormallyUnramified.iff_comp_injective_of_small
UnivLE.small
univLE_of_max
UnivLE.self
Algebra.FormallyUnramified.of_isSeparable
IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.isScalarTower_mid'
Algebra.IsSeparable.of_algHom
IntermediateField.adjoin.finiteDimensional
IsSeparable.isIntegral
Algebra.IsSeparable.isSeparable
of_isSeparable_aux
Algebra.EssFiniteType.of_finiteType
Module.Finite.finiteType
comp_bijective
Function.Bijective.existsUnique
IntermediateField.adjoin_le_iff
AlgHom.ext
AlgHom.comp_assoc
IntermediateField.finiteDimensional_adjoin
Finite.Set.finite_insert
Finite.of_fintype
Field.exists_primitive_element
IntermediateField.subset_adjoin
Set.image_congr
Set.image_singleton
IntermediateField.fieldRange_val
AlgHom.fieldRange_eq_map
IntermediateField.adjoin_map
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.commutes
AlgHom.congr_fun
of_isSeparable_aux 📖mathematicalAlgebra.FormallyEtale
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.FormallyUnramified.of_isSeparable
Algebra.FormallyUnramified.finite_of_free
Module.Free.of_divisionRing
Ideal.instIsTwoSided_1
iff_comp_bijective
Algebra.FormallyUnramified.iff_comp_injective_of_small
UnivLE.small
univLE_of_max
UnivLE.self
Ideal.Quotient.mk_surjective
Ideal.Quotient.isScalarTower
IsScalarTower.right
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
minpoly.aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
isUnit_iff_ne_zero
Polynomial.Separable.aeval_derivative_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsSeparable.isSeparable
Ideal.Quotient.eq_zero_iff_mem
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_one
MonoidHomClass.toOneHomClass
mul_neg
IsUnit.mul_val_inv
neg_add_cancel
Polynomial.eval_map_algebraMap
Polynomial.eval_add_of_sq_eq_zero
Ideal.mem_bot
Ideal.pow_mem_pow
MulZeroClass.mul_zero
Polynomial.derivative_map
one_mul
mul_assoc
add_mul
Distrib.rightDistribClass
pow_two
add_comm
Ideal.mul_mem_mul
PowerBasis.algHom_ext
PowerBasis.lift_gen
add_zero

---

← Back to Index