Documentation Verification Report

Kaehler

πŸ“ Source: Mathlib/RingTheory/Etale/Kaehler.lean

Statistics

MetricCount
DefinitionstensorCotangent, tensorCotangentInvFun, tensorCotangentSpace, tensorH1Cotangent, tensorH1CotangentOfIsLocalization, tensorKaehlerEquivOfFormallyEtale
6
TheoremstensorCotangentInvFun_smul_mk, isLocalizedModule, tensorH1CotangentOfIsLocalization_toLinearMap, isBaseChange_of_formallyEtale, isLocalizedModule_map, span_range_map_derivation_of_isLocalization, tensorKaehlerEquivOfFormallyEtale_apply, tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap
8
Total14

Algebra

Definitions

NameCategoryTheorems
tensorH1CotangentOfIsLocalization πŸ“–CompOp
1 mathmath: tensorH1CotangentOfIsLocalization_toLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
tensorH1CotangentOfIsLocalization_toLinearMap πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
H1Cotangent
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
Extension.instAddCommGroupH1Cotangent
Generators.toExtension
Generators.self
toModule
Extension.instModuleH1CotangentOfIsScalarTowerCotangent
id
Extension.instModuleCotangent
Extension.instIsScalarTowerCotangent
IsScalarTower.right
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
to_smulCommClass
tensorH1CotangentOfIsLocalization
LinearMap.liftBaseChange
Extension.instIsScalarTowerH1CotangentOfCotangent
H1Cotangent.map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.right
Extension.instIsScalarTowerCotangent
Extension.instIsScalarTowerH1CotangentOfCotangent
RingHomInvPair.ids
to_smulCommClass
IsScalarTower.left
LinearMap.ext_ring
IsScalarTower.to_smulCommClass
LinearMap.ext
one_smul
Extension.H1Cotangent.equivOfFormallySmooth_symm
LinearEquiv.symm_apply_eq
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
OreLocalization.instIsScalarTower
Localization.isLocalization
Extension.instIsScalarTowerRing_2
IsLocalization.map_units
IsLocalization.exists_mk'_eq
Extension.algebraMap_surjective
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsLocalization.lift_mk'_spec
AlgHom.commutes
MvPolynomial.algHom_ext
MvPolynomial.aeval_X
Extension.algebraMap_Οƒ
Generators.algebraMap_apply
DFunLike.congr_fun
Extension.H1Cotangent.equivOfFormallySmooth_apply
H1Cotangent.map.eq_1
LinearMap.IsScalarTower.compatibleSMul
LinearMap.coe_restrictScalars
RingHomCompTriple.ids
LinearMap.comp_apply
Extension.H1Cotangent.map_comp
Extension.H1Cotangent.map_eq

Algebra.Extension

Definitions

NameCategoryTheorems
tensorCotangent πŸ“–CompOpβ€”
tensorCotangentInvFun πŸ“–CompOp
1 mathmath: tensorCotangentInvFun_smul_mk
tensorCotangentSpace πŸ“–CompOpβ€”
tensorH1Cotangent πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
tensorCotangentInvFun_smul_mk πŸ“–mathematicalalgebraMap
Ring
CommRing.toCommSemiring
commRing
CommSemiring.toSemiring
Hom.toRingHom
Algebra.id
Function.Bijective
TensorProduct
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
Submodule.addCommMonoid
Algebra.toModule
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.leftModule
Algebra.to_smulCommClass
LinearMap.instFunLike
LinearMap.liftBaseChange
Submodule.module'
Algebra.toSMul
IsScalarTower.right
Submodule.isScalarTower'
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Hom.mapKer
AddMonoidHom
Cotangent
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupCotangent
instModuleCotangent
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
TensorProduct.addZeroClass
AddMonoidHom.instFunLike
tensorCotangentInvFun
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
algebraβ‚‚
RingHom
RingHom.instFunLike
TensorProduct.leftHasSMul
SMulCommClass.of_commMonoid
CommRing.toCommMonoid
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Algebra.to_smulCommClass
IsScalarTower.right
Submodule.isScalarTower'
SMulCommClass.of_commMonoid
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
TensorProduct.isScalarTower_left
IsScalarTower.of_algebraMap_eq
Hom.algebraMap_toRingHom
RingHomCompTriple.ids
TensorProduct.smulCommClass_left
smulCommClass_self
RingHomInvPair.ids
LinearEquiv.symm_apply_apply

Algebra.H1Cotangent

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalizedModule πŸ“–mathematicalβ€”IsLocalizedModule
CommRing.toCommSemiring
Algebra.H1Cotangent
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupH1Cotangent
Algebra.Generators.toExtension
Algebra.Generators.self
Algebra.Extension.instModuleH1CotangentOfIsScalarTowerCotangent
Algebra.id
Algebra.Extension.instModuleCotangent
Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
CommSemiring.toSemiring
map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”Algebra.Extension.instIsScalarTowerCotangent
IsScalarTower.right
IsScalarTower.left
Algebra.Extension.instIsScalarTowerH1CotangentOfCotangent
isLocalizedModule_iff_isBaseChange
Algebra.to_smulCommClass
RingHomInvPair.ids
Algebra.tensorH1CotangentOfIsLocalization_toLinearMap
LinearEquiv.bijective

KaehlerDifferential

Definitions

NameCategoryTheorems
tensorKaehlerEquivOfFormallyEtale πŸ“–CompOp
2 mathmath: tensorKaehlerEquivOfFormallyEtale_apply, tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap

Theorems

NameKindAssumesProvesValidatesDepends On
isBaseChange_of_formallyEtale πŸ“–mathematicalβ€”IsBaseChange
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
CommRing.toCommSemiring
module'
Algebra.id
Algebra.to_smulCommClass
CommSemiring.toSemiring
IsScalarTower.to_smulCommClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
isScalarTower_of_tower
Algebra.toSMul
IsScalarTower.right
map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
β€”Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
isScalarTower_of_tower
IsScalarTower.right
IsScalarTower.left
RingHomInvPair.ids
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
TensorProduct.AlgebraTensorModule.curry_injective
LinearMap.ext
Derivation.liftKaehlerDifferential_unique
smulCommClass_self
Derivation.ext
map_D
mapBaseChange_tmul
LinearEquiv.bijective
isLocalizedModule_map πŸ“–mathematicalβ€”IsLocalizedModule
CommRing.toCommSemiring
KaehlerDifferential
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
module'
Algebra.id
Algebra.to_smulCommClass
CommSemiring.toSemiring
IsScalarTower.to_smulCommClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
β€”Algebra.FormallyEtale.of_isLocalization
Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.left
isScalarTower_of_tower
IsScalarTower.right
isLocalizedModule_iff_isBaseChange
isBaseChange_of_formallyEtale
span_range_map_derivation_of_isLocalization πŸ“–mathematicalβ€”Submodule.span
KaehlerDifferential
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
module'
Algebra.id
Algebra.to_smulCommClass
Set.range
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
IsScalarTower.to_smulCommClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap.instFunLike
map
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Derivation
smulCommClass_self
CommRing.toCommMonoid
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
Derivation.instFunLike
D
Top.top
Submodule
Submodule.instTop
β€”Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.left
smulCommClass_self
Set.range_comp
span_eq_top_of_isLocalizedModule
isScalarTower_of_tower
IsScalarTower.right
isLocalizedModule_map
span_range_derivation
tensorKaehlerEquivOfFormallyEtale_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
KaehlerDifferential
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
Algebra.toModule
module'
Algebra.id
Algebra.to_smulCommClass
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
tensorKaehlerEquivOfFormallyEtale
LinearMap
LinearMap.instFunLike
mapBaseChange
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
KaehlerDifferential
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
instAddCommGroupKaehlerDifferential
Algebra.toModule
module'
Algebra.id
Algebra.to_smulCommClass
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
tensorKaehlerEquivOfFormallyEtale
Derivation
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Derivation.instFunLike
D
RingHom
RingHom.instFunLike
algebraMap
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Algebra.to_smulCommClass
RingHomInvPair.ids
smulCommClass_self
LinearEquiv.symm_apply_eq
tensorKaehlerEquivOfFormallyEtale_apply
IsScalarTower.to_smulCommClass
IsScalarTower.left
mapBaseChange_tmul
one_smul
map_D

---

← Back to Index