Documentation Verification Report

EuclideanDomain

πŸ“ Source: Mathlib/RingTheory/EuclideanDomain.lean

Statistics

MetricCount
DefinitionsEuclideanDomain, gcdMonoid
2
Theoremsdvd_or_coprime, gcd_isUnit_iff, isCoprime_of_dvd, span_gcd, isCoprime_div_gcd_div_gcd, isCoprime_div_gcd_div_gcd_of_gcd_ne_zero, left_div_gcd_ne_zero, right_div_gcd_ne_zero
8
Total10

EuclideanDomain

Definitions

NameCategoryTheorems
gcdMonoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_or_coprime πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
toCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
IsCoprime
β€”dvd_or_isCoprime
IsBezout.of_isPrincipalIdealRing
to_principal_ideal_domain
gcd_isUnit_iff πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
toCommRing
gcd
IsCoprime
β€”gcd_isUnit_iff
IsBezout.of_isPrincipalIdealRing
to_principal_ideal_domain
instIsDomain
isCoprime_of_dvd πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
IsCoprime
CommRing.toCommSemiring
β€”isCoprime_of_dvd
IsBezout.of_isPrincipalIdealRing
to_principal_ideal_domain
span_gcd πŸ“–mathematicalβ€”Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
toCommRing
Set
Set.instSingletonSet
gcd
Set.instInsert
β€”span_gcd
IsBezout.of_isPrincipalIdealRing
to_principal_ideal_domain
instIsDomain

(root)

Definitions

NameCategoryTheorems
EuclideanDomain πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isCoprime_div_gcd_div_gcd πŸ“–mathematicalβ€”IsCoprime
CommRing.toCommSemiring
EuclideanDomain.toCommRing
EuclideanDomain.instDiv
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
β€”gcd_isUnit_iff
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
EuclideanDomain.instIsDomain
isUnit_gcd_of_eq_mul_gcd
EuclideanDomain.mul_div_cancel'
gcd_ne_zero_of_right
GCDMonoid.gcd_dvd_left
GCDMonoid.gcd_dvd_right
isCoprime_div_gcd_div_gcd_of_gcd_ne_zero πŸ“–mathematicalβ€”IsCoprime
CommRing.toCommSemiring
EuclideanDomain.toCommRing
EuclideanDomain.instDiv
GCDMonoid.gcd
CommSemiring.toCommMonoidWithZero
β€”gcd_isUnit_iff
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
EuclideanDomain.instIsDomain
isUnit_gcd_of_eq_mul_gcd
EuclideanDomain.mul_div_cancel'
GCDMonoid.gcd_dvd_left
GCDMonoid.gcd_dvd_right
left_div_gcd_ne_zero πŸ“–β€”β€”β€”β€”GCDMonoid.gcd_dvd_left
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
EuclideanDomain.instIsDomain
mul_comm
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
right_div_gcd_ne_zero πŸ“–β€”β€”β€”β€”GCDMonoid.gcd_dvd_right
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
EuclideanDomain.instIsDomain
mul_comm
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass

---

← Back to Index