| Name | Category | Theorems |
CotangentSpace š | CompOp | 54 mathmath: Algebra.Presentation.differentials.commāā_single, H1Cotangent.equiv_apply, Algebra.Generators.cotangentSpaceBasis_apply, Algebra.Presentation.differentials.commāā, formallySmooth_iff_split_injection, CotangentSpace.map_id, lTensor_cotangentComplex_eq_cotangentComplexBaseChange, Algebra.Generators.cotangentSpaceBasis_repr_one_tmul, subsingleton_h1Cotangent, CotangentSpace.map_tmul, H1Cotangent.val_zero, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, Algebra.Generators.cotangentSpaceBasis_repr_tmul, Hom.sub_one_tmul, Algebra.Generators.H1Cotangent.Ī“Aux_toAlgHom, CotangentSpace.map_toInfinitesimal_bijective, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, CotangentSpace.map_sub_map, CotangentSpace.map_cotangentComplex, cotangentComplexBaseChange_eq_lTensor_cotangentComplex, Algebra.Generators.H1Cotangent.Ī“Aux_ofComp, Algebra.Presentation.differentials.commāā', h1Cotangentι_ext_iff, Algebra.Generators.toKaehler_tmul_D, H1Cotangent.val_add, H1Cotangent.val_smul, Algebra.Presentation.differentials.commāā, toKaehler_surjective, Algebra.Generators.disjoint_ker_toKaehler_of_linearIndependent, Algebra.Generators.CotangentSpace.exact, Algebra.Generators.repr_CotangentSpaceMap, H1Cotangent.map_apply_coe, Algebra.Generators.toKaehler_cotangentSpaceBasis, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, h1Cotangentι_apply, cotangentComplex_injective_iff, Algebra.Generators.CotangentSpace.map_toComp_injective, Hom.sub_tmul, Algebra.SubmersivePresentation.sectionCotangent_comp, Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, Algebra.Generators.instFreeCotangentSpaceToExtension, Algebra.Generators.CotangentSpace.fst_compEquiv_apply, Algebra.SubmersivePresentation.cotangentComplex_injective, CotangentSpace.map_comp, exact_cotangentComplex_toKaehler, Algebra.Generators.CotangentSpace.map_ofComp_surjective, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, Algebra.Generators.CotangentSpace.fst_compEquiv, CotangentSpace.map_comp_apply, Algebra.Generators.H1Cotangent.equiv_apply, CotangentSpace.map_comp_cotangentComplex, Cotangent.map_sub_map, cotangentComplex_mk
|
H1Cotangent š | CompOp | 24 mathmath: H1Cotangent.equiv_apply, H1Cotangent.map_id, h1Cotangentι_injective, instIsScalarTowerH1CotangentOfCotangent, subsingleton_h1Cotangent, H1Cotangent.val_zero, Algebra.Generators.H1Cotangent.exact_map_Ī“, Algebra.Generators.H1Cotangent.exact_Ī“_map, H1Cotangent.equivOfFormallySmooth_apply, Algebra.SubmersivePresentation.subsingleton_h1Cotangent, H1Cotangent.equivOfFormallySmooth_symm, H1Cotangent.val_add, H1Cotangent.val_smul, Algebra.Generators.H1Cotangent.Ī“_eq, Algebra.Generators.H1Cotangent.exact_map_Ī“', H1Cotangent.map_apply_coe, h1Cotangentι_apply, Algebra.Generators.H1Cotangent.Ī“_eq_Ī“Aux, H1Cotangent.equivOfFormallySmooth_toLinearMap, Algebra.Generators.H1Cotangent.Ī“_comp_equiv, Algebra.Generators.H1Cotangent.equiv_apply, Algebra.Generators.H1Cotangent.Ī“_map, H1Cotangent.map_comp, H1Cotangent.map_toInfinitesimal_bijective
|
cotangentComplex š | CompOp | 25 mathmath: Algebra.Presentation.differentials.commāā_single, H1Cotangent.equiv_apply, formallySmooth_iff_split_injection, lTensor_cotangentComplex_eq_cotangentComplexBaseChange, subsingleton_h1Cotangent, H1Cotangent.val_zero, Algebra.FormallySmooth.iff_injective_lTensor_residueField, CotangentSpace.map_sub_map, CotangentSpace.map_cotangentComplex, cotangentComplexBaseChange_eq_lTensor_cotangentComplex, h1Cotangentι_ext_iff, H1Cotangent.val_add, H1Cotangent.val_smul, Algebra.Presentation.differentials.commāā, H1Cotangent.map_apply_coe, h1Cotangentι_apply, cotangentComplex_injective_iff, Algebra.SubmersivePresentation.sectionCotangent_comp, Algebra.SubmersivePresentation.cotangentComplex_injective, exact_cotangentComplex_toKaehler, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, Algebra.Generators.H1Cotangent.equiv_apply, CotangentSpace.map_comp_cotangentComplex, Cotangent.map_sub_map, cotangentComplex_mk
|
h1Cotangentι š | CompOp | 2 mathmath: h1Cotangentι_injective, h1Cotangentι_apply
|
instAddCommGroupH1Cotangent š | CompOp | 29 mathmath: H1Cotangent.equiv_apply, H1Cotangent.map_id, h1Cotangentι_injective, instIsScalarTowerH1CotangentOfCotangent, H1Cotangent.val_zero, Algebra.Generators.H1Cotangent.exact_map_Ī“, Algebra.Generators.H1Cotangent.exact_Ī“_map, Algebra.instFiniteH1CotangentOfFinitePresentationOfProjectiveKaehlerDifferential, H1Cotangent.equivOfFormallySmooth_apply, H1Cotangent.equivOfFormallySmooth_symm, H1Cotangent.val_add, H1Cotangent.val_smul, Algebra.Generators.H1Cotangent.Ī“_eq, Algebra.Generators.H1Cotangent.exact_map_Ī“', H1Cotangent.map_apply_coe, h1Cotangentι_apply, Algebra.H1Cotangent.isLocalizedModule, Algebra.Generators.H1Cotangent.Ī“_eq_Ī“Aux, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, H1Cotangent.equivOfFormallySmooth_toLinearMap, Algebra.H1Cotangent.exact_map_Ī“, Algebra.Generators.H1Cotangent.Ī“_comp_equiv, Algebra.smoothLocus_eq_compl_support_inter, Algebra.Generators.H1Cotangent.equiv_apply, Algebra.H1Cotangent.exact_Ī“_mapBaseChange, Algebra.Generators.H1Cotangent.Ī“_map, Algebra.etaleLocus_eq_compl_support, H1Cotangent.map_comp, H1Cotangent.map_toInfinitesimal_bijective
|
instModuleH1CotangentOfIsScalarTowerCotangent š | CompOp | 27 mathmath: H1Cotangent.equiv_apply, H1Cotangent.map_id, h1Cotangentι_injective, instIsScalarTowerH1CotangentOfCotangent, Algebra.Generators.H1Cotangent.exact_map_Ī“, Algebra.Generators.H1Cotangent.exact_Ī“_map, Algebra.instFiniteH1CotangentOfFinitePresentationOfProjectiveKaehlerDifferential, H1Cotangent.equivOfFormallySmooth_apply, H1Cotangent.equivOfFormallySmooth_symm, H1Cotangent.val_smul, Algebra.Generators.H1Cotangent.Ī“_eq, Algebra.Generators.H1Cotangent.exact_map_Ī“', H1Cotangent.map_apply_coe, h1Cotangentι_apply, Algebra.H1Cotangent.isLocalizedModule, Algebra.Generators.H1Cotangent.Ī“_eq_Ī“Aux, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, H1Cotangent.equivOfFormallySmooth_toLinearMap, Algebra.H1Cotangent.exact_map_Ī“, Algebra.Generators.H1Cotangent.Ī“_comp_equiv, Algebra.smoothLocus_eq_compl_support_inter, Algebra.Generators.H1Cotangent.equiv_apply, Algebra.H1Cotangent.exact_Ī“_mapBaseChange, Algebra.Generators.H1Cotangent.Ī“_map, Algebra.etaleLocus_eq_compl_support, H1Cotangent.map_comp, H1Cotangent.map_toInfinitesimal_bijective
|
toKaehler š | CompOp | 9 mathmath: Algebra.Presentation.differentials.commāā, Algebra.Generators.H1Cotangent.Ī“Aux_ofComp, Algebra.Presentation.differentials.commāā', Algebra.Generators.toKaehler_tmul_D, Algebra.Generators.H1Cotangent.Ī“_eq, toKaehler_surjective, Algebra.Generators.disjoint_ker_toKaehler_of_linearIndependent, Algebra.Generators.toKaehler_cotangentSpaceBasis, exact_cotangentComplex_toKaehler
|