📁 Source: Mathlib/RingTheory/Extension/Cotangent/Basis.lean
exists_presentation_of_basis_cotangent
exists_presentation_of_free_cotangent
val
Algebra.Presentation.toGenerators
DFunLike.coe
Module.Basis
Algebra.Extension.Cotangent
toExtension
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.Extension.instAddCommGroupCotangent
Algebra.Extension.instModuleCotangent
Algebra.id
Module.Basis.instFunLike
LinearMap
Algebra.Extension.Ring
Algebra.Extension.commRing
RingHom.id
Semiring.toNonAssocSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Algebra.Extension.ker
Submodule.addCommMonoid
Submodule.module
Algebra.Extension.algebra₂
LinearMap.instFunLike
Algebra.Presentation.relation
Algebra.Presentation.relation_mem_ker
subsingleton_or_nontrivial
Function.surjective_to_subsingleton
Set.range_const
Ideal.span_singleton_one
RingHom.ker_eq_top_of_subsingleton
Module.subsingleton
AlgHomClass.toRingHomClass
AlgHom.algHomClass
ker_eq_ker_aeval_val
Algebra.FinitePresentation.ker_fG_of_surjective
algebraMap_eq
algebraMap_surjective
Algebra.FinitePresentation.mvPolynomial
Algebra.Etale.finitePresentation
Algebra.instEtaleOfIsStandardSmoothOfRelativeDimensionOfNatNat
Algebra.IsStandardSmoothOfRelativeDimension.id
IsScalarTower.right
Submodule.comap_le_comap_iff_of_le_range
RingHomSurjective.ids
Submodule.range_subtype
Submodule.comap_subtype_self
Submodule.comap_sup_of_injective
Submodule.subtype_injective
IsScalarTower.left
Submodule.comap_smul''
Submodule.coe_subtype
Ideal.span.eq_1
Set.range_comp
Submodule.map_span
Submodule.comap_map_eq_of_injective
Submodule.isScalarTower'
Algebra.Extension.instIsScalarTowerCotangent
Submodule.restrictScalars_span
le_trans
le_top
top_le_iff
Submodule.restrictScalars_eq_top_iff
Module.Basis.span_eq
smulCommClass_self
Submodule.exists_sub_one_mem_and_smul_le_of_fg_of_le_sup
le_rfl
Algebra.Extension.Cotangent.mk_surjective
Module.finrank
Algebra.Extension.Cotangent.finite
fg_ker_of_finitePresentation
commRing_strongRankCondition
---
← Back to Index