| Name | Category | Theorems |
algebra π | CompOp | 11 mathmath: StandardEtalePresentation.toPresentation_algebra_smul, Algebra.SubmersivePresentation.ofSubsingleton_algebra_algebraMap, algebraMap_eq, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_algebraMap_apply, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, self_algebra_smul, Algebra.SubmersivePresentation.ofSubsingleton_algebra_smul, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, self_algebra_algebraMap, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_smul
|
baseChange π | CompOp | 2 mathmath: baseChange_val, Algebra.Presentation.baseChange_toGenerators
|
comp π | CompOp | 36 mathmath: toAlgHom_ofComp_localizationAway, compLocalizationAwayAlgHom_toAlgHom_toComp, liftBaseChange_injective_of_isLocalizationAway, map_toComp_ker, ofComp_val, toComp_val, compLocalizationAwayAlgHom_X_inl, map_ofComp_ker, H1Cotangent.exact_map_Ξ΄, CotangentSpace.compEquiv_symm_zero, toAlgHom_ofComp_surjective, comp_val, Cotangent.surjective_map_ofComp, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Algebra.Presentation.comp_relation, Algebra.Presentation.toGenerators_comp, H1Cotangent.Ξ΄Aux_ofComp, cotangentCompAwaySec_apply, toAlgHom_ofComp_rename, comp_localizationAway_ker, Cotangent.exact, toComp_toAlgHom, toComp_toAlgHom_monomial, CotangentSpace.exact, ofComp_kerCompPreimage, CotangentSpace.compEquiv_symm_inr, ker_comp_eq_sup, ofComp_toAlgHom_monomial_sumElim, CotangentSpace.map_toComp_injective, compLocalizationAwayAlgHom_relation_eq_zero, CotangentSpace.fst_compEquiv_apply, comp_Ο, CotangentSpace.map_ofComp_surjective, H1Cotangent.map_comp_cotangentComplex_baseChange, CotangentSpace.fst_compEquiv, Algebra.PreSubmersivePresentation.toGenerators_comp
|
defaultHom π | CompOp | 2 mathmath: defaultHom_val, H1Cotangent.equiv_apply
|
extend π | CompOp | 2 mathmath: extend_val_inr, extend_val_inl
|
extendScalars π | CompOp | 2 mathmath: toExtendScalars_val, extendScalars_val
|
id π | CompOp | β |
instInhabitedHom π | CompOp | β |
instRing π | CompOp | 13 mathmath: H1Cotangent.Ξ΄Aux_mul, cotangentSpaceBasis_apply, algebraMap_surjective, Algebra.Presentation.quotientEquiv_symm, toExtension_algebraβ, algebraMap_apply, H1Cotangent.Ξ΄Aux_toAlgHom, instIsScalarTowerRing, toAlgHom_ofComp_rename, Ο_smul, Algebra.Presentation.quotientEquiv_mk, H1Cotangent.equiv_apply, Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det
|
ker π | CompOp | 27 mathmath: Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.Presentation.quotientEquiv_symm, map_toComp_ker, compLocalizationAwayAlgHom_X_inl, map_ofComp_ker, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Algebra.Presentation.span_range_relation_eq_ker, ker_localizationAway, Algebra.Presentation.fg_ker, Algebra.Presentation.relation_mem_ker, comp_localizationAway_ker, ker_ofAlgEquiv, ofComp_kerCompPreimage, ker_comp_eq_sup, ker_eq_ker_aeval_val, ker_ofAlgHom, cotangentRestrict_mk, H1Cotangent.Ξ΄_eq_Ξ΄Aux, compLocalizationAwayAlgHom_relation_eq_zero, fg_ker_of_finitePresentation, Algebra.Presentation.quotientEquiv_mk, Algebra.Presentation.instFinitePresentationQuotientOfFinite, ker_naive, Algebra.Presentation.mem_ker_naive, C_mul_X_sub_one_mem_ker
|
kerCompPreimage π | CompOp | 1 mathmath: ofComp_kerCompPreimage
|
localizationAway π | CompOp | 16 mathmath: toAlgHom_ofComp_localizationAway, Algebra.Presentation.localizationAway_relation, compLocalizationAwayAlgHom_toAlgHom_toComp, liftBaseChange_injective_of_isLocalizationAway, compLocalizationAwayAlgHom_X_inl, localizationAway_Ο, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, cotangentCompAwaySec_apply, ker_localizationAway, comp_localizationAway_ker, cMulXSubOneCotangent_eq, localizationAway_val, compLocalizationAwayAlgHom_relation_eq_zero, Algebra.instFreeCotangentToExtensionUnitLocalizationAway, basisCotangentAway_apply, C_mul_X_sub_one_mem_ker
|
naive π | CompOp | 4 mathmath: Algebra.Presentation.naive_toGenerators, naive_val, naive_Ο, ker_naive
|
ofAlgEquiv π | CompOp | 3 mathmath: ker_ofAlgEquiv, Algebra.Presentation.ofAlgEquiv_toGenerators, ofAlgEquiv_val
|
ofAlgHom π | CompOp | 2 mathmath: ker_ofAlgHom, StandardEtalePresentation.toPresentation_relation
|
ofComp π | CompOp | 17 mathmath: toAlgHom_ofComp_localizationAway, map_toComp_ker, ofComp_val, map_ofComp_ker, H1Cotangent.exact_map_Ξ΄, toAlgHom_ofComp_surjective, Cotangent.surjective_map_ofComp, H1Cotangent.Ξ΄Aux_ofComp, toAlgHom_ofComp_rename, Cotangent.exact, CotangentSpace.exact, ofComp_kerCompPreimage, ker_comp_eq_sup, ofComp_toAlgHom_monomial_sumElim, CotangentSpace.fst_compEquiv_apply, CotangentSpace.map_ofComp_surjective, CotangentSpace.fst_compEquiv
|
ofSet π | CompOp | β |
ofSurjective π | CompOp | 1 mathmath: ofSurjective_val
|
ofSurjectiveAlgebraMap π | CompOp | β |
reindex π | CompOp | 2 mathmath: reindex_val, Algebra.Presentation.reindex_toGenerators
|
self π | CompOp | 11 mathmath: self_val, Algebra.instFiniteH1CotangentOfFinitePresentationOfProjectiveKaehlerDifferential, self_Ο, self_algebra_smul, Algebra.H1Cotangent.isLocalizedModule, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, Algebra.H1Cotangent.exact_map_Ξ΄, self_algebra_algebraMap, Algebra.smoothLocus_eq_compl_support_inter, Algebra.H1Cotangent.exact_Ξ΄_mapBaseChange, Algebra.etaleLocus_eq_compl_support
|
toComp π | CompOp | 16 mathmath: compLocalizationAwayAlgHom_toAlgHom_toComp, liftBaseChange_injective_of_isLocalizationAway, map_toComp_ker, toComp_val, CotangentSpace.compEquiv_symm_zero, cotangentCompLocalizationAwayEquiv_symm_comp_inl, comp_localizationAway_ker, Cotangent.exact, toComp_toAlgHom, toComp_toAlgHom_monomial, CotangentSpace.exact, CotangentSpace.compEquiv_symm_inr, ker_comp_eq_sup, CotangentSpace.map_toComp_injective, cotangentCompLocalizationAwayEquiv_symm_inl, H1Cotangent.map_comp_cotangentComplex_baseChange
|
toExtendScalars π | CompOp | 1 mathmath: toExtendScalars_val
|
toExtension π | CompOp | 70 mathmath: Algebra.SubmersivePresentation.cotangentComplexAux_injective, Algebra.Presentation.differentials.commββ_single, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, cotangentSpaceBasis_apply, Algebra.Presentation.differentials.commββ, toExtension_Ο, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, Algebra.Presentation.differentials.homβ_single, exists_presentation_of_basis_cotangent, liftBaseChange_injective_of_isLocalizationAway, cotangentSpaceBasis_repr_one_tmul, Hom.toExtensionHom_toAlgHom_apply, toExtension_algebraβ, exists_presentation_of_free_cotangent, H1Cotangent.exact_map_Ξ΄, CotangentSpace.compEquiv_symm_zero, cotangentSpaceBasis_repr_tmul, H1Cotangent.Ξ΄Aux_toAlgHom, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, Hom.toExtensionHom_id, Algebra.Presentation.differentials.surjective_homβ, Cotangent.surjective_map_ofComp, H1Cotangent.exact_Ξ΄_map, Algebra.instFiniteH1CotangentOfFinitePresentationOfProjectiveKaehlerDifferential, H1Cotangent.Ξ΄Aux_ofComp, Algebra.Presentation.differentials.commββ', cotangentCompAwaySec_apply, Hom.toExtensionHom_toRingHom, Algebra.SubmersivePresentation.subsingleton_h1Cotangent, Cotangent.exact, cMulXSubOneCotangent_eq, toKaehler_tmul_D, Algebra.Presentation.differentials.commββ, H1Cotangent.exact_map_Ξ΄', disjoint_ker_toKaehler_of_linearIndependent, CotangentSpace.exact, Algebra.SubmersivePresentation.basisCotangent_localizationAway_apply, Hom.toExtensionHom_comp, repr_CotangentSpaceMap, Algebra.SubmersivePresentation.cotangentComplexAux_surjective, toKaehler_cotangentSpaceBasis, CotangentSpace.compEquiv_symm_inr, toExtension_algebraβ, Algebra.H1Cotangent.isLocalizedModule, cotangentRestrict_mk, cotangentRestrict_bijective_of_basis_kaehlerDifferential, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, CotangentSpace.map_toComp_injective, toExtension_Ring, Algebra.SubmersivePresentation.sectionCotangent_comp, Algebra.H1Cotangent.exact_map_Ξ΄, H1Cotangent.Ξ΄_comp_equiv, Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, instFreeCotangentSpaceToExtension, Algebra.SubmersivePresentation.free_cotangent, CotangentSpace.fst_compEquiv_apply, Algebra.smoothLocus_eq_compl_support_inter, Algebra.SubmersivePresentation.cotangentComplex_injective, Algebra.instFreeCotangentToExtensionUnitLocalizationAway, Algebra.SubmersivePresentation.basisCotangent_apply, basisCotangentAway_apply, CotangentSpace.map_ofComp_surjective, H1Cotangent.map_comp_cotangentComplex_baseChange, CotangentSpace.fst_compEquiv, H1Cotangent.equiv_apply, Algebra.H1Cotangent.exact_Ξ΄_mapBaseChange, Algebra.SubmersivePresentation.cotangentEquiv_apply, H1Cotangent.Ξ΄_map, Algebra.etaleLocus_eq_compl_support, toExtension_commRing
|
val π | CompOp | 56 mathmath: baseChange_val, aeval_val_surjective, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, self_val, defaultHom_val, exists_presentation_of_basis_cotangent, cotangentSpaceBasis_repr_one_tmul, Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply, ofComp_val, exists_presentation_of_free_cotangent, naive_val, algebraMap_apply, algebraMap_eq, Hom.aeval_val, Algebra.Presentation.comp_aeval_relation_inl, extend_val_inr, Algebra.PreSubmersivePresentation.aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, H1Cotangent.Ξ΄Aux_monomial, Hom.algebraMap_toAlgHom', cotangentSpaceBasis_repr_tmul, Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation, comp_val, Algebra.Presentation.aeval_val_relation, Algebra.Presentation.differentials.commββ', Algebra.PreSubmersivePresentation.aevalDifferential_single, aeval_val_Ο, Algebra.SubmersivePresentation.ofSubsingleton_val, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, toKaehler_tmul_D, extendScalars_val, Algebra.SubmersivePresentation.aeval_jacobianOfHasCoeffs, Algebra.Presentation.aeval_val_relationOfHasCoeffs, Algebra.SubmersivePresentation.aeval_invJacobianOfHasCoeffs, repr_CotangentSpaceMap, reindex_val, toKaehler_cotangentSpaceBasis, localizationAway_val, Algebra.SubmersivePresentation.basisKaehler_apply, ofComp_toAlgHom_monomial_sumElim, aeval_val_eq_zero, StandardEtalePresentation.aeval_val_equivMvPolynomial, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, ker_eq_ker_aeval_val, cotangentRestrict_mk, aeval_val_Ο', StandardEtalePresentation.toPresentation_val, ofAlgEquiv_val, MvPolynomial.universalFactorizationMapPresentation_val, Algebra.PreSubmersivePresentation.ofHasCoeffs_val, Hom.algebraMap_toAlgHom, ofSurjective_val, extend_val_inl, Algebra.SubmersivePresentation.basisDeriv_apply, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val
|
Ο π | CompOp | 18 mathmath: toAlgHom_ofComp_localizationAway, toExtension_Ο, defaultHom_val, compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.Presentation.quotientEquiv_symm, compLocalizationAwayAlgHom_X_inl, Algebra.SubmersivePresentation.jacobianRelations_spec, Algebra.SubmersivePresentation.map_invJacobianOfHasCoeffs, localizationAway_Ο, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Ο_smul, Ο_injective, aeval_val_Ο, self_Ο, Algebra.SubmersivePresentation.exists_sum_eq_Ο_jacobian_mul_Ο_jacobian_inv_sub_one, naive_Ο, compLocalizationAwayAlgHom_relation_eq_zero, comp_Ο
|
Ο' π | CompOp | 5 mathmath: Algebra.PreSubmersivePresentation.ofHasCoeffs_Ο', StandardEtalePresentation.toPresentation_Ο', aeval_val_Ο', Algebra.SubmersivePresentation.ofSubsingleton_Ο', MvPolynomial.universalFactorizationMapPresentation_Ο'
|