Documentation Verification Report

Generators

πŸ“ Source: Mathlib/RingTheory/Extension/Generators.lean

Statistics

MetricCount
Definitionscomp, equivAlgHom, id, toAlgHom, toExtensionHom, val, Οƒ, algebra, baseChange, comp, defaultHom, extend, extendScalars, id, instInhabitedHom, instRing, ker, kerCompPreimage, localizationAway, naive, ofAlgEquiv, ofAlgHom, ofComp, ofSet, ofSurjective, ofSurjectiveAlgebraMap, reindex, self, toComp, toExtendScalars, toExtension, val, Οƒ, Οƒ', Generators, Generators, Generators
37
Theoremsiff_exists_generators, aeval_val, algebraMap_toAlgHom, algebraMap_toAlgHom', comp_id, comp_val, equivAlgHom_apply_coe, equivAlgHom_symm_apply_val, ext, ext_iff, id_comp, id_val, toAlgHom_C, toAlgHom_X, toAlgHom_comp_apply, toAlgHom_id, toAlgHom_monomial, toExtensionHom_comp, toExtensionHom_id, toExtensionHom_toAlgHom_apply, toExtensionHom_toRingHom, aeval_val_eq_zero, aeval_val_surjective, aeval_val_Οƒ, aeval_val_Οƒ', algebraMap_apply, algebraMap_eq, algebraMap_surjective, baseChange_val, comp_val, comp_Οƒ, defaultHom_val, extendScalars_val, extend_val_inl, extend_val_inr, finiteType, instIsScalarTowerRing, ker_comp_eq_sup, ker_eq_ker_aeval_val, ker_naive, ker_ofAlgEquiv, ker_ofAlgHom, localizationAway_val, localizationAway_Οƒ, map_ofComp_ker, map_toComp_ker, naive_val, naive_Οƒ, ofAlgEquiv_val, ofComp_kerCompPreimage, ofComp_toAlgHom_monomial_sumElim, ofComp_val, ofSurjective_val, reindex_val, self_algebra_algebraMap, self_algebra_smul, self_val, self_Οƒ, toAlgHom_ofComp_localizationAway, toAlgHom_ofComp_rename, toAlgHom_ofComp_surjective, toComp_toAlgHom, toComp_toAlgHom_monomial, toComp_val, toExtendScalars_val, toExtension_Ring, toExtension_algebra₁, toExtension_algebraβ‚‚, toExtension_commRing, toExtension_Οƒ, Οƒ_injective, Οƒ_smul
72
Total109

Algebra.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
iff_exists_generators πŸ“–mathematicalβ€”Algebra.FiniteType
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.Generators
β€”iff_quotient_mvPolynomial''
MvPolynomial.aeval_unique
Algebra.Generators.finiteType
Finite.of_fintype

Algebra.Generators

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
11 mathmath: StandardEtalePresentation.toPresentation_algebra_smul, Algebra.SubmersivePresentation.ofSubsingleton_algebra_algebraMap, algebraMap_eq, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_algebraMap_apply, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, self_algebra_smul, Algebra.SubmersivePresentation.ofSubsingleton_algebra_smul, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, self_algebra_algebraMap, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_smul
baseChange πŸ“–CompOp
2 mathmath: baseChange_val, Algebra.Presentation.baseChange_toGenerators
comp πŸ“–CompOp
36 mathmath: toAlgHom_ofComp_localizationAway, compLocalizationAwayAlgHom_toAlgHom_toComp, liftBaseChange_injective_of_isLocalizationAway, map_toComp_ker, ofComp_val, toComp_val, compLocalizationAwayAlgHom_X_inl, map_ofComp_ker, H1Cotangent.exact_map_Ξ΄, CotangentSpace.compEquiv_symm_zero, toAlgHom_ofComp_surjective, comp_val, Cotangent.surjective_map_ofComp, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Algebra.Presentation.comp_relation, Algebra.Presentation.toGenerators_comp, H1Cotangent.Ξ΄Aux_ofComp, cotangentCompAwaySec_apply, toAlgHom_ofComp_rename, comp_localizationAway_ker, Cotangent.exact, toComp_toAlgHom, toComp_toAlgHom_monomial, CotangentSpace.exact, ofComp_kerCompPreimage, CotangentSpace.compEquiv_symm_inr, ker_comp_eq_sup, ofComp_toAlgHom_monomial_sumElim, CotangentSpace.map_toComp_injective, compLocalizationAwayAlgHom_relation_eq_zero, CotangentSpace.fst_compEquiv_apply, comp_Οƒ, CotangentSpace.map_ofComp_surjective, H1Cotangent.map_comp_cotangentComplex_baseChange, CotangentSpace.fst_compEquiv, Algebra.PreSubmersivePresentation.toGenerators_comp
defaultHom πŸ“–CompOp
2 mathmath: defaultHom_val, H1Cotangent.equiv_apply
extend πŸ“–CompOp
2 mathmath: extend_val_inr, extend_val_inl
extendScalars πŸ“–CompOp
2 mathmath: toExtendScalars_val, extendScalars_val
id πŸ“–CompOpβ€”
instInhabitedHom πŸ“–CompOpβ€”
instRing πŸ“–CompOp
13 mathmath: H1Cotangent.Ξ΄Aux_mul, cotangentSpaceBasis_apply, algebraMap_surjective, Algebra.Presentation.quotientEquiv_symm, toExtension_algebraβ‚‚, algebraMap_apply, H1Cotangent.Ξ΄Aux_toAlgHom, instIsScalarTowerRing, toAlgHom_ofComp_rename, Οƒ_smul, Algebra.Presentation.quotientEquiv_mk, H1Cotangent.equiv_apply, Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det
ker πŸ“–CompOp
27 mathmath: Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.Presentation.quotientEquiv_symm, map_toComp_ker, compLocalizationAwayAlgHom_X_inl, map_ofComp_ker, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Algebra.Presentation.span_range_relation_eq_ker, ker_localizationAway, Algebra.Presentation.fg_ker, Algebra.Presentation.relation_mem_ker, comp_localizationAway_ker, ker_ofAlgEquiv, ofComp_kerCompPreimage, ker_comp_eq_sup, ker_eq_ker_aeval_val, ker_ofAlgHom, cotangentRestrict_mk, H1Cotangent.Ξ΄_eq_Ξ΄Aux, compLocalizationAwayAlgHom_relation_eq_zero, fg_ker_of_finitePresentation, Algebra.Presentation.quotientEquiv_mk, Algebra.Presentation.instFinitePresentationQuotientOfFinite, ker_naive, Algebra.Presentation.mem_ker_naive, C_mul_X_sub_one_mem_ker
kerCompPreimage πŸ“–CompOp
1 mathmath: ofComp_kerCompPreimage
localizationAway πŸ“–CompOp
16 mathmath: toAlgHom_ofComp_localizationAway, Algebra.Presentation.localizationAway_relation, compLocalizationAwayAlgHom_toAlgHom_toComp, liftBaseChange_injective_of_isLocalizationAway, compLocalizationAwayAlgHom_X_inl, localizationAway_Οƒ, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, cotangentCompAwaySec_apply, ker_localizationAway, comp_localizationAway_ker, cMulXSubOneCotangent_eq, localizationAway_val, compLocalizationAwayAlgHom_relation_eq_zero, Algebra.instFreeCotangentToExtensionUnitLocalizationAway, basisCotangentAway_apply, C_mul_X_sub_one_mem_ker
naive πŸ“–CompOp
4 mathmath: Algebra.Presentation.naive_toGenerators, naive_val, naive_Οƒ, ker_naive
ofAlgEquiv πŸ“–CompOp
3 mathmath: ker_ofAlgEquiv, Algebra.Presentation.ofAlgEquiv_toGenerators, ofAlgEquiv_val
ofAlgHom πŸ“–CompOp
2 mathmath: ker_ofAlgHom, StandardEtalePresentation.toPresentation_relation
ofComp πŸ“–CompOp
17 mathmath: toAlgHom_ofComp_localizationAway, map_toComp_ker, ofComp_val, map_ofComp_ker, H1Cotangent.exact_map_Ξ΄, toAlgHom_ofComp_surjective, Cotangent.surjective_map_ofComp, H1Cotangent.Ξ΄Aux_ofComp, toAlgHom_ofComp_rename, Cotangent.exact, CotangentSpace.exact, ofComp_kerCompPreimage, ker_comp_eq_sup, ofComp_toAlgHom_monomial_sumElim, CotangentSpace.fst_compEquiv_apply, CotangentSpace.map_ofComp_surjective, CotangentSpace.fst_compEquiv
ofSet πŸ“–CompOpβ€”
ofSurjective πŸ“–CompOp
1 mathmath: ofSurjective_val
ofSurjectiveAlgebraMap πŸ“–CompOpβ€”
reindex πŸ“–CompOp
2 mathmath: reindex_val, Algebra.Presentation.reindex_toGenerators
self πŸ“–CompOp
11 mathmath: self_val, Algebra.instFiniteH1CotangentOfFinitePresentationOfProjectiveKaehlerDifferential, self_Οƒ, self_algebra_smul, Algebra.H1Cotangent.isLocalizedModule, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, Algebra.H1Cotangent.exact_map_Ξ΄, self_algebra_algebraMap, Algebra.smoothLocus_eq_compl_support_inter, Algebra.H1Cotangent.exact_Ξ΄_mapBaseChange, Algebra.etaleLocus_eq_compl_support
toComp πŸ“–CompOp
16 mathmath: compLocalizationAwayAlgHom_toAlgHom_toComp, liftBaseChange_injective_of_isLocalizationAway, map_toComp_ker, toComp_val, CotangentSpace.compEquiv_symm_zero, cotangentCompLocalizationAwayEquiv_symm_comp_inl, comp_localizationAway_ker, Cotangent.exact, toComp_toAlgHom, toComp_toAlgHom_monomial, CotangentSpace.exact, CotangentSpace.compEquiv_symm_inr, ker_comp_eq_sup, CotangentSpace.map_toComp_injective, cotangentCompLocalizationAwayEquiv_symm_inl, H1Cotangent.map_comp_cotangentComplex_baseChange
toExtendScalars πŸ“–CompOp
1 mathmath: toExtendScalars_val
toExtension πŸ“–CompOp
70 mathmath: Algebra.SubmersivePresentation.cotangentComplexAux_injective, Algebra.Presentation.differentials.comm₁₂_single, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, cotangentSpaceBasis_apply, Algebra.Presentation.differentials.comm₂₃, toExtension_Οƒ, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, Algebra.Presentation.differentials.hom₁_single, exists_presentation_of_basis_cotangent, liftBaseChange_injective_of_isLocalizationAway, cotangentSpaceBasis_repr_one_tmul, Hom.toExtensionHom_toAlgHom_apply, toExtension_algebraβ‚‚, exists_presentation_of_free_cotangent, H1Cotangent.exact_map_Ξ΄, CotangentSpace.compEquiv_symm_zero, cotangentSpaceBasis_repr_tmul, H1Cotangent.Ξ΄Aux_toAlgHom, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, Hom.toExtensionHom_id, Algebra.Presentation.differentials.surjective_hom₁, Cotangent.surjective_map_ofComp, H1Cotangent.exact_Ξ΄_map, Algebra.instFiniteH1CotangentOfFinitePresentationOfProjectiveKaehlerDifferential, H1Cotangent.Ξ΄Aux_ofComp, Algebra.Presentation.differentials.comm₂₃', cotangentCompAwaySec_apply, Hom.toExtensionHom_toRingHom, Algebra.SubmersivePresentation.subsingleton_h1Cotangent, Cotangent.exact, cMulXSubOneCotangent_eq, toKaehler_tmul_D, Algebra.Presentation.differentials.comm₁₂, H1Cotangent.exact_map_Ξ΄', disjoint_ker_toKaehler_of_linearIndependent, CotangentSpace.exact, Algebra.SubmersivePresentation.basisCotangent_localizationAway_apply, Hom.toExtensionHom_comp, repr_CotangentSpaceMap, Algebra.SubmersivePresentation.cotangentComplexAux_surjective, toKaehler_cotangentSpaceBasis, CotangentSpace.compEquiv_symm_inr, toExtension_algebra₁, Algebra.H1Cotangent.isLocalizedModule, cotangentRestrict_mk, cotangentRestrict_bijective_of_basis_kaehlerDifferential, Algebra.tensorH1CotangentOfIsLocalization_toLinearMap, CotangentSpace.map_toComp_injective, toExtension_Ring, Algebra.SubmersivePresentation.sectionCotangent_comp, Algebra.H1Cotangent.exact_map_Ξ΄, H1Cotangent.Ξ΄_comp_equiv, Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, instFreeCotangentSpaceToExtension, Algebra.SubmersivePresentation.free_cotangent, CotangentSpace.fst_compEquiv_apply, Algebra.smoothLocus_eq_compl_support_inter, Algebra.SubmersivePresentation.cotangentComplex_injective, Algebra.instFreeCotangentToExtensionUnitLocalizationAway, Algebra.SubmersivePresentation.basisCotangent_apply, basisCotangentAway_apply, CotangentSpace.map_ofComp_surjective, H1Cotangent.map_comp_cotangentComplex_baseChange, CotangentSpace.fst_compEquiv, H1Cotangent.equiv_apply, Algebra.H1Cotangent.exact_Ξ΄_mapBaseChange, Algebra.SubmersivePresentation.cotangentEquiv_apply, H1Cotangent.Ξ΄_map, Algebra.etaleLocus_eq_compl_support, toExtension_commRing
val πŸ“–CompOp
56 mathmath: baseChange_val, aeval_val_surjective, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, self_val, defaultHom_val, exists_presentation_of_basis_cotangent, cotangentSpaceBasis_repr_one_tmul, Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply, ofComp_val, exists_presentation_of_free_cotangent, naive_val, algebraMap_apply, algebraMap_eq, Hom.aeval_val, Algebra.Presentation.comp_aeval_relation_inl, extend_val_inr, Algebra.PreSubmersivePresentation.aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, H1Cotangent.Ξ΄Aux_monomial, Hom.algebraMap_toAlgHom', cotangentSpaceBasis_repr_tmul, Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation, comp_val, Algebra.Presentation.aeval_val_relation, Algebra.Presentation.differentials.comm₂₃', Algebra.PreSubmersivePresentation.aevalDifferential_single, aeval_val_Οƒ, Algebra.SubmersivePresentation.ofSubsingleton_val, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, toKaehler_tmul_D, extendScalars_val, Algebra.SubmersivePresentation.aeval_jacobianOfHasCoeffs, Algebra.Presentation.aeval_val_relationOfHasCoeffs, Algebra.SubmersivePresentation.aeval_invJacobianOfHasCoeffs, repr_CotangentSpaceMap, reindex_val, toKaehler_cotangentSpaceBasis, localizationAway_val, Algebra.SubmersivePresentation.basisKaehler_apply, ofComp_toAlgHom_monomial_sumElim, aeval_val_eq_zero, StandardEtalePresentation.aeval_val_equivMvPolynomial, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, ker_eq_ker_aeval_val, cotangentRestrict_mk, aeval_val_Οƒ', StandardEtalePresentation.toPresentation_val, ofAlgEquiv_val, MvPolynomial.universalFactorizationMapPresentation_val, Algebra.PreSubmersivePresentation.ofHasCoeffs_val, Hom.algebraMap_toAlgHom, ofSurjective_val, extend_val_inl, Algebra.SubmersivePresentation.basisDeriv_apply, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val
Οƒ πŸ“–CompOp
18 mathmath: toAlgHom_ofComp_localizationAway, toExtension_Οƒ, defaultHom_val, compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.Presentation.quotientEquiv_symm, compLocalizationAwayAlgHom_X_inl, Algebra.SubmersivePresentation.jacobianRelations_spec, Algebra.SubmersivePresentation.map_invJacobianOfHasCoeffs, localizationAway_Οƒ, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Οƒ_smul, Οƒ_injective, aeval_val_Οƒ, self_Οƒ, Algebra.SubmersivePresentation.exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, naive_Οƒ, compLocalizationAwayAlgHom_relation_eq_zero, comp_Οƒ
Οƒ' πŸ“–CompOp
5 mathmath: Algebra.PreSubmersivePresentation.ofHasCoeffs_Οƒ', StandardEtalePresentation.toPresentation_Οƒ', aeval_val_Οƒ', Algebra.SubmersivePresentation.ofSubsingleton_Οƒ', MvPolynomial.universalFactorizationMapPresentation_Οƒ'

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_val_eq_zero πŸ“–mathematicalRing
Ideal
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
DFunLike.coe
AlgHom
MvPolynomial
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
val
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”algebraMap_apply
aeval_val_surjective πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
val
β€”aeval_val_Οƒ
aeval_val_Οƒ πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
val
Οƒ
β€”aeval_val_Οƒ'
aeval_val_Οƒ' πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
val
Οƒ'
β€”β€”
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Ring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
instRing
AlgHom
MvPolynomial
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
val
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraMap_eq
algebraMap_eq πŸ“–mathematicalβ€”algebraMap
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.commSemiring
CommSemiring.toSemiring
algebra
RingHomClass.toRingHom
AlgHom
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MvPolynomial.aeval
val
β€”β€”
algebraMap_surjective πŸ“–mathematicalβ€”Ring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
instRing
β€”aeval_val_Οƒ
algebraMap_apply
baseChange_val πŸ“–mathematicalβ€”val
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
baseChange
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Algebra.to_smulCommClass
comp_val πŸ“–mathematicalβ€”val
comp
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”
comp_Οƒ πŸ“–mathematicalβ€”Οƒ
comp
Finsupp.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
MvPolynomial
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.rename
LinearMap
RingHom.id
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp.mapDomain
Nat.instAddCommMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
defaultHom_val πŸ“–mathematicalβ€”Hom.val
defaultHom
Ring
Οƒ
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
val
β€”β€”
extendScalars_val πŸ“–mathematicalβ€”val
extendScalars
β€”β€”
extend_val_inl πŸ“–mathematicalβ€”val
extend
β€”β€”
extend_val_inr πŸ“–mathematicalβ€”val
extend
β€”β€”
finiteType πŸ“–mathematicalβ€”Algebra.FiniteType
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”Algebra.FiniteType.of_surjective
Algebra.FiniteType.instMvPolynomialOfFinite
Module.Finite.finiteType
Module.Finite.self
instIsScalarTowerRing
IsScalarTower.left
algebraMap_surjective
instIsScalarTowerRing πŸ“–mathematicalβ€”IsScalarTower
Ring
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
instRing
β€”IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap_of_tower
MvPolynomial.isScalarTower
IsScalarTower.right
algebraMap_eq
ker_comp_eq_sup πŸ“–mathematicalβ€”ker
comp
Ideal
Ring
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Ideal.map
AlgHom
MvPolynomial.algebra
AlgHom.funLike
Hom.toAlgHom
toComp
Ideal.comap
ofComp
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_ofComp_ker
Ideal.comap_map_of_surjective
toAlgHom_ofComp_surjective
sup_assoc
map_toComp_ker
RingHom.ker_eq_comap_bot
le_antisymm
le_trans
le_sup_right
le_sup_left
sup_of_le_left
ker_eq_ker_aeval_val
RingHom.mem_ker
Algebra.algebraMap_self_apply
Hom.algebraMap_toAlgHom
IsScalarTower.right
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
ker_eq_ker_aeval_val πŸ“–mathematicalβ€”ker
RingHom.ker
MvPolynomial
CommRing.toCommSemiring
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MvPolynomial.aeval
val
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.ker.congr_simp
algebraMap_eq
ker_naive πŸ“–mathematicalDFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
ker
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
MvPolynomial.algebra
Algebra.id
naive
β€”Ideal.instIsTwoSided_1
Ideal.mk_ker
ker_ofAlgEquiv πŸ“–mathematicalβ€”ker
ofAlgEquiv
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
ker_eq_ker_aeval_val
ofAlgEquiv_val
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgHom.coe_coe
MvPolynomial.comp_aeval
AlgHom.comap_ker
RingHom.instRingHomClass
RingHom.ker_coe_toRingHom
AlgHomClass.toRingHom_toAlgHom
AlgHom.ker_coe_equiv
RingHom.ker_eq_comap_bot
ker_ofAlgHom πŸ“–mathematicalMvPolynomial
CommRing.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
ker
ofAlgHom
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
β€”RingHom.instRingHomClass
MvPolynomial.ringHom_ext
algebraMap_apply
MvPolynomial.algHom_C
MvPolynomial.aeval_X
localizationAway_val πŸ“–mathematicalβ€”val
localizationAway
IsLocalization.Away.invSelf
CommRing.toCommSemiring
β€”β€”
localizationAway_Οƒ πŸ“–mathematicalβ€”Οƒ
localizationAway
MvPolynomial
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
IsLocalization.Away.sec
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MvPolynomial.X
β€”β€”
map_ofComp_ker πŸ“–mathematicalβ€”Ideal.map
Ring
comp
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
ofComp
ker
β€”Ideal.ext
Ideal.mem_map_iff_of_surjective
AlgHomClass.toRingHomClass
AlgHom.algHomClass
toAlgHom_ofComp_surjective
ker_eq_ker_aeval_val
Hom.algebraMap_toAlgHom
IsScalarTower.right
Algebra.algebraMap_self_apply
ofComp_kerCompPreimage
map_toComp_ker πŸ“–mathematicalβ€”Ideal.map
Ring
comp
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
toComp
ker
RingHom.ker
AlgHomClass.toRingHomClass
AlgHom.algHomClass
ofComp
β€”le_antisymm
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.map_le_iff_le_comap
MvPolynomial.isScalarTower
instIsScalarTowerRing
IsScalarTower.left
MvPolynomial.algHom_ext
Hom.toAlgHom_X
algebraMap_apply
MvPolynomial.aeval_X
IsScalarTower.algebraMap_apply
IsScalarTower.right
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finset.sum_fiberwise_of_maps_to
Finset.mem_image_of_mem
sum_mem
Submodule.addSubmonoidClass
map_sum
RingHomClass.toAddMonoidHomClass
Finset.mul_sum
Finset.sum_congr
toComp_toAlgHom_monomial
MvPolynomial.monomial_mul
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
add_zero
zero_add
one_mul
Finset.mem_filter
Ideal.mul_mem_left
Ideal.mem_map_of_mem
ker_eq_ker_aeval_val
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
MvPolynomial.coeff_zero
Set.compl_subset_compl
AddEquiv.surjective
Finset.coe_map
Set.image_congr
EquivLike.toEmbeddingLike
AddEquiv.symm_apply_apply
MvPolynomial.monomial_zero
Finset.sum_filter
finsum_eq_sum_of_support_subset
MvPolynomial.induction_on'
ofComp_toAlgHom_monomial_sumElim
MvPolynomial.coeff_monomial
AddEquiv.injective
AddEquiv.apply_symm_apply
AddMonoidHomClass.toZeroHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_ite_eq
ite_and
MvPolynomial.coeff_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
ite_add_zero
finsum_add_distrib
Set.Finite.subset
Finset.finite_toSet
Finset.sum_map
MvPolynomial.support_sum_monomial_coeff
naive_val πŸ“–mathematicalβ€”val
HasQuotient.Quotient
MvPolynomial
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
MvPolynomial.algebra
Algebra.id
naive
DFunLike.coe
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
RingHom.instFunLike
MvPolynomial.X
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
naive_Οƒ πŸ“–mathematicalDFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Οƒ
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
MvPolynomial.algebra
Algebra.id
naive
β€”Ideal.instIsTwoSided_1
ofAlgEquiv_val πŸ“–mathematicalβ€”val
ofAlgEquiv
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
β€”β€”
ofComp_kerCompPreimage πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Ring
comp
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
ofComp
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
kerCompPreimage
β€”MvPolynomial.support_sum_monomial_coeff
kerCompPreimage.eq_1
map_finsuppSum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Finsupp.sum.eq_1
Finset.sum_congr
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Hom.toAlgHom_monomial
one_smul
Sum.inl_injective
MvPolynomial.rename.eq_1
AlgHom.comp_apply
MvPolynomial.comp_aeval
Hom.toAlgHom_X
MvPolynomial.monomial_eq
MvPolynomial.aeval_def
IsScalarTower.algebraMap_eq
MvPolynomial.isScalarTower
IsScalarTower.right
MvPolynomial.algebraMap_eq
MvPolynomial.coe_evalβ‚‚Hom
MvPolynomial.map_aeval
aeval_val_Οƒ
ofComp_toAlgHom_monomial_sumElim πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Ring
comp
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
ofComp
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp.sumElim
MulZeroClass.toZero
Nat.instMulZeroClass
MvPolynomial.aeval
val
β€”Hom.toAlgHom_monomial
MvPolynomial.monomial_eq
MvPolynomial.aeval_monomial
Finsupp.prod_sumElim
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Algebra.smul_def
MvPolynomial.C_mul
mul_assoc
mul_comm
ofComp_val πŸ“–mathematicalβ€”Hom.val
comp
Algebra.id
CommRing.toCommSemiring
ofComp
Ring
MvPolynomial.X
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
val
β€”β€”
ofSurjective_val πŸ“–mathematicalMvPolynomial
CommRing.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
val
ofSurjective
β€”β€”
reindex_val πŸ“–mathematicalβ€”val
reindex
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
self_algebra_algebraMap πŸ“–mathematicalβ€”Algebra.algebraMap
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.commSemiring
CommSemiring.toSemiring
algebra
self
AlgHom.toRingHom
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
β€”β€”
self_algebra_smul πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
Algebra.toSMul
MvPolynomial.commSemiring
CommSemiring.toSemiring
algebra
self
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
AlgHom.toRingHom
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
β€”β€”
self_val πŸ“–mathematicalβ€”val
self
β€”β€”
self_Οƒ πŸ“–mathematicalβ€”Οƒ
self
MvPolynomial.X
CommRing.toCommSemiring
β€”β€”
toAlgHom_ofComp_localizationAway πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Ring
comp
localizationAway
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
ofComp
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.rename
Οƒ
MvPolynomial.X
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MvPolynomial.C
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MvPolynomial.aeval_rename
MvPolynomial.aeval_C_comp_left
aeval_val_Οƒ
MvPolynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
toAlgHom_ofComp_rename πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Ring
comp
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
ofComp
MvPolynomial
MvPolynomial.rename
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MvPolynomial.C
algebraMap
instRing
β€”MvPolynomial.isScalarTower
IsScalarTower.right
instIsScalarTowerRing
IsScalarTower.left
MvPolynomial.algHom_ext
MvPolynomial.ext
MvPolynomial.rename_X
Hom.toAlgHom_X
algebraMap_apply
MvPolynomial.aeval_X
DFunLike.congr_fun
toAlgHom_ofComp_surjective πŸ“–mathematicalβ€”Ring
comp
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
ofComp
β€”MvPolynomial.induction_on
MvPolynomial.aeval_rename
MvPolynomial.isScalarTower
IsScalarTower.right
aeval_val_Οƒ
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MvPolynomial.aeval_X
toComp_toAlgHom πŸ“–mathematicalβ€”Hom.toAlgHom
comp
Algebra.id
CommRing.toCommSemiring
toComp
MvPolynomial.rename
β€”β€”
toComp_toAlgHom_monomial πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Ring
comp
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Hom.toAlgHom
toComp
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp.sumElim
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp
Finsupp.instZero
β€”Finsupp.ext
Finsupp.mapDomain_notin_range
Finsupp.mapDomain_apply
Sum.inr_injective
MvPolynomial.rename_monomial
toComp_val πŸ“–mathematicalβ€”Hom.val
comp
toComp
MvPolynomial.X
CommRing.toCommSemiring
β€”β€”
toExtendScalars_val πŸ“–mathematicalβ€”Hom.val
extendScalars
Algebra.id
CommRing.toCommSemiring
toExtendScalars
MvPolynomial.X
β€”β€”
toExtension_Ring πŸ“–mathematicalβ€”Algebra.Extension.Ring
toExtension
Ring
β€”β€”
toExtension_algebra₁ πŸ“–mathematicalβ€”Algebra.Extension.algebra₁
toExtension
MvPolynomial.algebra
CommRing.toCommSemiring
Algebra.id
β€”β€”
toExtension_algebraβ‚‚ πŸ“–mathematicalβ€”Algebra.Extension.algebraβ‚‚
toExtension
instRing
β€”β€”
toExtension_commRing πŸ“–mathematicalβ€”Algebra.Extension.commRing
toExtension
MvPolynomial.instCommRingMvPolynomial
β€”β€”
toExtension_Οƒ πŸ“–mathematicalβ€”Algebra.Extension.Οƒ
toExtension
Οƒ
β€”β€”
Οƒ_injective πŸ“–mathematicalβ€”Ring
Οƒ
β€”aeval_val_Οƒ
Οƒ_smul πŸ“–mathematicalβ€”Ring
Algebra.toSMul
MvPolynomial.commSemiring
CommRing.toCommSemiring
CommSemiring.toSemiring
instRing
Οƒ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Algebra.smul_def
algebraMap_apply
aeval_val_Οƒ

Algebra.Generators.Hom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
5 mathmath: comp_id, toAlgHom_comp_apply, toExtensionHom_comp, comp_val, id_comp
equivAlgHom πŸ“–CompOp
2 mathmath: equivAlgHom_symm_apply_val, equivAlgHom_apply_coe
id πŸ“–CompOp
5 mathmath: id_val, comp_id, toExtensionHom_id, toAlgHom_id, id_comp
toAlgHom πŸ“–CompOp
24 mathmath: Algebra.Generators.toAlgHom_ofComp_localizationAway, Algebra.Generators.compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.Generators.map_toComp_ker, toExtensionHom_toAlgHom_apply, Algebra.Generators.map_ofComp_ker, Algebra.Generators.toAlgHom_ofComp_surjective, algebraMap_toAlgHom', Algebra.Generators.H1Cotangent.Ξ΄Aux_toAlgHom, toAlgHom_X, Algebra.Generators.H1Cotangent.Ξ΄Aux_ofComp, Algebra.Generators.toAlgHom_ofComp_rename, toExtensionHom_toRingHom, Algebra.Generators.comp_localizationAway_ker, Algebra.Generators.toComp_toAlgHom, toAlgHom_C, toAlgHom_comp_apply, Algebra.Generators.toComp_toAlgHom_monomial, Algebra.Generators.ofComp_kerCompPreimage, Algebra.Generators.ker_comp_eq_sup, Algebra.Generators.ofComp_toAlgHom_monomial_sumElim, toAlgHom_id, toAlgHom_monomial, algebraMap_toAlgHom, equivAlgHom_apply_coe
toExtensionHom πŸ“–CompOp
20 mathmath: Algebra.Generators.liftBaseChange_injective_of_isLocalizationAway, toExtensionHom_toAlgHom_apply, Algebra.Generators.H1Cotangent.exact_map_Ξ΄, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, toExtensionHom_id, Algebra.Generators.Cotangent.surjective_map_ofComp, toExtensionHom_toRingHom, Algebra.Generators.Cotangent.exact, Algebra.Generators.H1Cotangent.exact_map_Ξ΄', Algebra.Generators.CotangentSpace.exact, toExtensionHom_comp, Algebra.Generators.repr_CotangentSpaceMap, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, Algebra.Generators.CotangentSpace.map_toComp_injective, Algebra.Generators.CotangentSpace.fst_compEquiv_apply, Algebra.Generators.CotangentSpace.map_ofComp_surjective, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, Algebra.Generators.CotangentSpace.fst_compEquiv, Algebra.Generators.H1Cotangent.equiv_apply, Algebra.Generators.H1Cotangent.Ξ΄_map
val πŸ“–CompOp
13 mathmath: Algebra.Generators.defaultHom_val, Algebra.Generators.ofComp_val, Algebra.Generators.toComp_val, id_val, aeval_val, Algebra.Generators.H1Cotangent.Ξ΄Aux_toAlgHom, ext_iff, toAlgHom_X, Algebra.Generators.toExtendScalars_val, Algebra.Generators.repr_CotangentSpaceMap, equivAlgHom_symm_apply_val, comp_val, toAlgHom_monomial

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_val πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
val
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”β€”
algebraMap_toAlgHom πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Generators.Ring
toAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”MvPolynomial.isScalarTower
IsScalarTower.right
MvPolynomial.algHom_ext
MvPolynomial.aeval_X
aeval_val
DFunLike.congr_fun
algebraMap_toAlgHom' πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Generators.Ring
toAlgHom
β€”algebraMap_toAlgHom
IsScalarTower.right
comp_id πŸ“–mathematicalβ€”comp
Algebra.id
CommRing.toCommSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
id
β€”ext
IsScalarTower.left
MvPolynomial.ext
MvPolynomial.aeval_X
comp_val πŸ“–mathematicalβ€”val
comp
DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
Algebra.Generators.Ring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
β€”β€”
equivAlgHom_apply_coe πŸ“–mathematicalβ€”AlgHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
DFunLike.coe
Equiv
Algebra.Generators.Hom
EquivLike.toFunLike
Equiv.instEquivLike
equivAlgHom
toAlgHom
β€”β€”
equivAlgHom_symm_apply_val πŸ“–mathematicalβ€”val
DFunLike.coe
Equiv
AlgHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
Algebra.Generators.Hom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivAlgHom
AlgHom.funLike
MvPolynomial.X
β€”β€”
ext πŸ“–β€”valβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”valβ€”ext
id_comp πŸ“–mathematicalβ€”comp
Algebra.id
CommRing.toCommSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
id
β€”ext
IsScalarTower.left
IsScalarTower.right
MvPolynomial.ext
MvPolynomial.aeval_X_left
id_val πŸ“–mathematicalβ€”val
Algebra.id
CommRing.toCommSemiring
id
MvPolynomial.X
β€”β€”
toAlgHom_C πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
toAlgHom
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
RingHom.instFunLike
MvPolynomial.C
algebraMap
β€”MvPolynomial.aeval_C
toAlgHom_X πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
toAlgHom
MvPolynomial.X
val
β€”MvPolynomial.aeval_X
toAlgHom_comp_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
toAlgHom
comp
β€”MvPolynomial.induction_on
AlgHom.map_algebraMap
MvPolynomial.isScalarTower
IsScalarTower.right
IsScalarTower.left
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
toAlgHom_X
toAlgHom_id πŸ“–mathematicalβ€”toAlgHom
Algebra.id
CommRing.toCommSemiring
id
AlgHom.id
Algebra.Generators.Ring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
β€”MvPolynomial.algHom_ext
toAlgHom_X
toAlgHom_monomial πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
toAlgHom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Algebra.toSMul
Finsupp.prod
MulZeroClass.toZero
Nat.instMulZeroClass
CommRing.toCommMonoid
MvPolynomial.instCommRingMvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
val
β€”toAlgHom.eq_1
MvPolynomial.aeval_monomial
Algebra.smul_def
toExtensionHom_comp πŸ“–mathematicalβ€”toExtensionHom
comp
Algebra.Extension.Hom.comp
Algebra.Generators.toExtension
β€”Algebra.Extension.Hom.ext
RingHom.ext
toAlgHom_comp_apply
toExtensionHom_id πŸ“–mathematicalβ€”toExtensionHom
Algebra.id
CommRing.toCommSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
id
Algebra.Extension.Hom.id
Algebra.Generators.toExtension
β€”Algebra.Extension.Hom.ext
IsScalarTower.left
IsScalarTower.right
RingHom.ext
toAlgHom_id
toExtensionHom_toAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Algebra.Extension.Ring
Algebra.Generators.toExtension
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.Extension.commRing
Algebra.Extension.instRingOfIsScalarTower
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
Algebra.Extension.Hom.toAlgHom
toExtensionHom
Algebra.Generators.Ring
MvPolynomial.commSemiring
MvPolynomial.algebra
toAlgHom
β€”IsScalarTower.left
toExtensionHom_toRingHom πŸ“–mathematicalβ€”Algebra.Extension.Hom.toRingHom
Algebra.Generators.toExtension
toExtensionHom
AlgHom.toRingHom
Algebra.Generators.Ring
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
toAlgHom
β€”β€”

Algebra.Generators.Simps

Definitions

NameCategoryTheorems
Οƒ πŸ“–CompOpβ€”

CartanMatrix

Definitions

NameCategoryTheorems
Generators πŸ“–CompDataβ€”

IsFreeGroup

Definitions

NameCategoryTheorems
Generators πŸ“–CompOp
2 mathmath: toFreeGroup_symm_apply, toFreeGroup_apply

IsFreeGroupoid

Definitions

NameCategoryTheorems
Generators πŸ“–CompOp
2 mathmath: path_nonempty_of_hom, generators_connected

---

← Back to Index