Documentation Verification Report

Submersive

πŸ“ Source: Mathlib/RingTheory/Extension/Presentation/Submersive.lean

Statistics

MetricCount
DefinitionsPreSubmersivePresentation, aevalDifferential, baseChange, basis, comp, differential, jacobiMatrix, jacobian, localizationAway, map, naive, ofAlgEquiv, ofBijectiveAlgebraMap, reindex, toPresentation, SubmersivePresentation, aevalDifferentialEquiv, baseChange, basisDeriv, comp, id, localizationAway, ofAlgEquiv, ofBijectiveAlgebraMap, ofSubsingleton, reindex, toPreSubmersivePresentation
27
TheoremsaevalDifferential_single, aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, baseChange_jacobian, baseChange_ring, baseChange_toPresentation, card_relations_le_card_vars_of_isFinite, comp_jacobian_eq_jacobian_smul_jacobian, comp_map, dimension_comp_eq_dimension_add_dimension, isUnit_jacobian_iff_aevalDifferential_bijective, isUnit_jacobian_of_linearIndependent_of_span_eq_top, jacobiMatrix_apply, jacobiMatrix_naive, jacobiMatrix_ofAlgEquiv, jacobiMatrix_reindex, jacobian_eq_det_aevalDifferential, jacobian_eq_jacobiMatrix_det, jacobian_ofAlgEquiv, jacobian_reindex, localizationAway_jacobiMatrix, localizationAway_jacobian, localizationAway_map, map_inj, naive_toPresentation, ofAlgEquiv_map, ofAlgEquiv_toPresentation, ofBijectiveAlgebraMap_jacobian, reindex_map, reindex_toPresentation, toGenerators_comp, toPresentation_comp, aevalDifferentialEquiv_apply, basisDeriv_apply, jacobian_isUnit, linearIndependent_aeval_val_pderiv_relation, ofAlgEquiv_toPreSubmersivePresentation, ofSubsingleton_algebra_algebraMap, ofSubsingleton_algebra_smul, ofSubsingleton_map, ofSubsingleton_relation, ofSubsingleton_val, ofSubsingleton_Οƒ', reindex_toPreSubmersivePresentation
43
Total70

Algebra

Definitions

NameCategoryTheorems
PreSubmersivePresentation πŸ“–CompDataβ€”
SubmersivePresentation πŸ“–CompData
1 mathmath: IsStandardSmooth.out

Algebra.PreSubmersivePresentation

Definitions

NameCategoryTheorems
aevalDifferential πŸ“–CompOp
5 mathmath: isUnit_jacobian_iff_aevalDifferential_bijective, aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, jacobian_eq_det_aevalDifferential, aevalDifferential_single, Algebra.SubmersivePresentation.aevalDifferentialEquiv_apply
baseChange πŸ“–CompOp
3 mathmath: baseChange_jacobian, baseChange_toPresentation, baseChange_ring
basis πŸ“–CompOpβ€”
comp πŸ“–CompOp
5 mathmath: comp_jacobian_eq_jacobian_smul_jacobian, dimension_comp_eq_dimension_add_dimension, comp_map, toPresentation_comp, toGenerators_comp
differential πŸ“–CompOpβ€”
jacobiMatrix πŸ“–CompOp
11 mathmath: jacobiMatrix_naive, jacobiMatrix_ofAlgEquiv, jacobiMatrix_reindex, Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs, Algebra.SubmersivePresentation.jacobianRelations_spec, aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, jacobiMatrix_apply, Algebra.SubmersivePresentation.exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, localizationAway_jacobiMatrix, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, jacobian_eq_jacobiMatrix_det
jacobian πŸ“–CompOp
26 mathmath: jacobian_ofAlgEquiv, jacobian_reindex, Polynomial.UniversalCoprimeFactorizationRing.exists_liesOver_residueFieldMap_bijective, baseChange_jacobian, isUnit_jacobian_iff_aevalDifferential_bijective, Polynomial.UniversalCoprimeFactorizationRing.homEquiv_comp_snd, Polynomial.UniversalFactorizationRing.jacobian_resentation, Algebra.SubmersivePresentation.jacobianRelations_spec, comp_jacobian_eq_jacobian_smul_jacobian, Polynomial.UniversalCoprimeFactorizationRing.homEquiv_comp_fst, Algebra.SubmersivePresentation.map_invJacobianOfHasCoeffs, jacobian_eq_det_aevalDifferential, isUnit_jacobian_of_cotangentRestrict_bijective, StandardEtalePresentation.toSubmersivePresentation_jacobian, isUnit_jacobian_of_linearIndependent_of_span_eq_top, ofBijectiveAlgebraMap_jacobian, Algebra.SubmersivePresentation.aeval_jacobianOfHasCoeffs, Algebra.SubmersivePresentation.aeval_invJacobianOfHasCoeffs, Algebra.SubmersivePresentation.exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, Polynomial.UniversalCoprimeFactorizationRing.factor₁_mul_factorβ‚‚, Algebra.SubmersivePresentation.jacobian_isUnit, Polynomial.UniversalCoprimeFactorizationRing.isCoprime_factor₁_factorβ‚‚, jacobian_eq_jacobiMatrix_det, Polynomial.instEtaleUniversalCoprimeFactorizationRing, MvPolynomial.universalFactorizationMapPresentation_jacobian, localizationAway_jacobian
localizationAway πŸ“–CompOp
3 mathmath: localizationAway_map, localizationAway_jacobiMatrix, localizationAway_jacobian
map πŸ“–CompOp
17 mathmath: cotangentComplexAux_apply, ofHasCoeffs_map, cotangentComplexAux_zero_iff, localizationAway_map, jacobiMatrix_apply, Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, StandardEtalePresentation.toSubmersivePresentation_map, map_inj, MvPolynomial.universalFactorizationMapPresentation_map, aevalDifferential_single, ofAlgEquiv_map, comp_map, Algebra.SubmersivePresentation.basisKaehler_apply, reindex_map, Algebra.SubmersivePresentation.basisDeriv_apply, Algebra.SubmersivePresentation.ofSubsingleton_map
naive πŸ“–CompOp
2 mathmath: jacobiMatrix_naive, naive_toPresentation
ofAlgEquiv πŸ“–CompOp
5 mathmath: jacobian_ofAlgEquiv, jacobiMatrix_ofAlgEquiv, Algebra.SubmersivePresentation.ofAlgEquiv_toPreSubmersivePresentation, ofAlgEquiv_map, ofAlgEquiv_toPresentation
ofBijectiveAlgebraMap πŸ“–CompOp
1 mathmath: ofBijectiveAlgebraMap_jacobian
reindex πŸ“–CompOp
5 mathmath: jacobian_reindex, Algebra.SubmersivePresentation.reindex_toPreSubmersivePresentation, jacobiMatrix_reindex, reindex_toPresentation, reindex_map
toPresentation πŸ“–CompOp
59 mathmath: Algebra.SubmersivePresentation.cotangentComplexAux_injective, cotangentComplexAux_apply, ofHasCoeffs_map, cotangentComplexAux_zero_iff, jacobiMatrix_reindex, Algebra.SubmersivePresentation.ofSubsingleton_algebra_algebraMap, Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs, ofHasCoeffs_relation, StandardEtalePresentation.toSubmersivePresentation_toPreSubmersivePresentation_toPresentation, Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply, Algebra.SubmersivePresentation.instHasCoeffs, ofHasCoeffs_Οƒ', Algebra.SubmersivePresentation.ofSubsingleton_relation, baseChange_toPresentation, Algebra.SubmersivePresentation.jacobianRelations_spec, aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, jacobiMatrix_apply, ofHasCoeffs_algebra_algebraMap_apply, Algebra.SubmersivePresentation.map_invJacobianOfHasCoeffs, Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, naive_toPresentation, Algebra.SubmersivePresentation.coeffs_toPresentation_subset_coeffs, Algebra.SubmersivePresentation.subsingleton_h1Cotangent, MvPolynomial.universalFactorizationMapPresentation_relation, dimension_comp_eq_dimension_add_dimension, aevalDifferential_single, Algebra.SubmersivePresentation.ofSubsingleton_val, MvPolynomial.universalFactorizationMapPresentation_algebra_algebraMap, Algebra.SubmersivePresentation.sum_jacobianRelationsOfHasCoeffs_mul_relationOfHasCoeffs, Algebra.SubmersivePresentation.aeval_jacobianOfHasCoeffs, Algebra.SubmersivePresentation.aeval_invJacobianOfHasCoeffs, Algebra.SubmersivePresentation.basisCotangent_localizationAway_apply, Algebra.SubmersivePresentation.cotangentComplexAux_surjective, ofAlgEquiv_toPresentation, Algebra.SubmersivePresentation.basisKaehler_apply, Algebra.SubmersivePresentation.exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, toPresentation_comp, Algebra.SubmersivePresentation.ofSubsingleton_algebra_smul, Algebra.SubmersivePresentation.ofSubsingleton_Οƒ', Algebra.SubmersivePresentation.rank_kaehlerDifferential, MvPolynomial.universalFactorizationMapPresentation_algebra_smul, Algebra.SubmersivePresentation.sectionCotangent_comp, MvPolynomial.universalFactorizationMapPresentation_val, MvPolynomial.universalFactorizationMapPresentation_Οƒ', Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, localizationAway_jacobiMatrix, Algebra.SubmersivePresentation.free_cotangent, ofHasCoeffs_val, ofHasCoeffs_algebra_smul, Algebra.SubmersivePresentation.cotangentComplex_injective, Algebra.SubmersivePresentation.basisCotangent_apply, reindex_toPresentation, Algebra.IsStandardSmoothOfRelativeDimension.out, jacobian_eq_jacobiMatrix_det, Algebra.SubmersivePresentation.cotangentEquiv_apply, baseChange_ring, Algebra.SubmersivePresentation.basisDeriv_apply, toGenerators_comp

Theorems

NameKindAssumesProvesValidatesDepends On
aevalDifferential_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
aevalDifferential
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AlgHom
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Presentation.toGenerators
toPresentation
Derivation
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
map
Algebra.Presentation.relation
β€”Pi.basisFun_apply
RingHomInvPair.ids
Module.Basis.constr_basis
aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
Matrix
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
aevalDifferential
Finite.of_fintype
AlgHom
MvPolynomial
Matrix.semiring
MvPolynomial.commSemiring
Matrix.instAlgebra
MvPolynomial.algebra
AlgHom.funLike
AlgHom.mapMatrix
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Presentation.toGenerators
toPresentation
jacobiMatrix
β€”Matrix.ext
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
Finite.of_fintype
smulCommClass_self
LinearMap.toMatrix_eq_toMatrix'
LinearMap.toMatrix_apply
Pi.basisFun_apply
Pi.basisFun_repr
aevalDifferential_single
jacobiMatrix_apply
baseChange_jacobian πŸ“–mathematicalβ€”jacobian
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
baseChange
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”nonempty_fintype
Algebra.to_smulCommClass
jacobian_eq_jacobiMatrix_det
Matrix.ext
jacobiMatrix_apply
MvPolynomial.pderiv_map
RingHom.map_det
Algebra.Generators.algebraMap_apply
MvPolynomial.aeval_map_algebraMap
TensorProduct.isScalarTower_left
IsScalarTower.right
MvPolynomial.aeval_one_tmul
baseChange_ring πŸ“–mathematicalβ€”Algebra.Generators.Ring
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.id
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.to_smulCommClass
Algebra.Presentation.toGenerators
toPresentation
baseChange
β€”Algebra.to_smulCommClass
baseChange_toPresentation πŸ“–mathematicalβ€”toPresentation
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.id
Algebra.TensorProduct.instCommRing
Algebra.TensorProduct.leftAlgebra
Algebra.to_smulCommClass
baseChange
Algebra.Presentation.baseChange
β€”Algebra.to_smulCommClass
card_relations_le_card_vars_of_isFinite πŸ“–mathematicalβ€”Nat.cardβ€”Nat.card_le_card_of_injective
comp_jacobian_eq_jacobian_smul_jacobian πŸ“–mathematicalβ€”jacobian
comp
Finite.instSum
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”nonempty_fintype
Finite.instSum
Finite.of_fintype
jacobian_eq_jacobiMatrix_det
Matrix.fromBlocks_toBlocks
Algebra.Generators.algebraMap_apply
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Matrix.det_fromBlocks_zero₁₂
mul_comm
Algebra.smul_def
comp_map πŸ“–mathematicalβ€”map
comp
β€”β€”
dimension_comp_eq_dimension_add_dimension πŸ“–mathematicalβ€”Algebra.Presentation.dimension
toPresentation
comp
β€”card_relations_le_card_vars_of_isFinite
Nat.card_sum
isUnit_jacobian_iff_aevalDifferential_bijective πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
jacobian
Function.Bijective
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
aevalDifferential
β€”jacobian_eq_det_aevalDifferential
LinearMap.isUnit_iff_isUnit_det
Module.Finite.pi
Module.Finite.self
Module.Free.function
Module.Free.self
Module.End.isUnit_iff
isUnit_jacobian_of_linearIndependent_of_span_eq_top πŸ“–mathematicalLinearIndependent
DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Presentation.toGenerators
toPresentation
Derivation
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
map
Algebra.Presentation.relation
Pi.addCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
jacobian
β€”isUnit_jacobian_iff_aevalDifferential_bijective
LinearMap.bijective_of_linearIndependent_of_span_eq_top
Module.Basis.span_eq
Pi.basisFun_apply
aevalDifferential_single
jacobiMatrix_apply πŸ“–mathematicalβ€”jacobiMatrix
DFunLike.coe
Derivation
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.commSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.algebra
Algebra.id
Semiring.toModule
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
map
Algebra.Presentation.relation
toPresentation
β€”Finite.of_fintype
RingHomInvPair.ids
smulCommClass_self
LinearEquiv.trans.congr_simp
LinearEquiv.arrowCongr.congr_simp
Pi.basisFun_equivFun
Function.smulCommClass
Algebra.to_smulCommClass
Module.Basis.constr_apply_fintype
Finset.sum_congr
Fintype.sum_single_smul
one_smul
jacobiMatrix_naive πŸ“–mathematicalβ€”jacobiMatrix
HasQuotient.Quotient
MvPolynomial
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set.range
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
MvPolynomial.algebra
Algebra.id
naive
DFunLike.coe
Derivation
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
jacobiMatrix_apply
jacobiMatrix_ofAlgEquiv πŸ“–mathematicalβ€”jacobiMatrix
ofAlgEquiv
β€”β€”
jacobiMatrix_reindex πŸ“–mathematicalβ€”jacobiMatrix
reindex
Matrix.map
Algebra.Generators.Ring
Algebra.Presentation.toGenerators
toPresentation
MvPolynomial
CommRing.toCommSemiring
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.reindex
Equiv.symm
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.rename
β€”Matrix.ext
jacobiMatrix_apply
MvPolynomial.pderiv_rename
Equiv.injective
jacobian_eq_det_aevalDifferential πŸ“–mathematicalβ€”jacobian
DFunLike.coe
MonoidHom
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Pi.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
LinearMap.det
aevalDifferential
β€”nonempty_fintype
Finite.of_fintype
AlgHomClass.toRingHomClass
AlgHom.algHomClass
jacobian_eq_jacobiMatrix_det
Algebra.Generators.algebraMap_eq
RingHom.map_det
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
Matrix.det.congr_simp
aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix
jacobian_eq_jacobiMatrix_det πŸ“–mathematicalβ€”jacobian
Finite.of_fintype
DFunLike.coe
RingHom
Algebra.Generators.Ring
Algebra.Presentation.toGenerators
toPresentation
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Algebra.Generators.instRing
Matrix.det
MvPolynomial.instCommRingMvPolynomial
jacobiMatrix
β€”Finite.of_fintype
Algebra.Generators.algebraMap_apply
LinearMap.det_toMatrix'
jacobian_ofAlgEquiv πŸ“–mathematicalβ€”jacobian
ofAlgEquiv
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
β€”nonempty_fintype
Finite.of_fintype
jacobian_eq_jacobiMatrix_det
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Algebra.Generators.algebraMap_apply
MvPolynomial.comp_aeval_apply
jacobian_reindex πŸ“–mathematicalβ€”jacobian
reindex
β€”nonempty_fintype
jacobian_eq_jacobiMatrix_det
Matrix.det.congr_simp
jacobiMatrix_reindex
Algebra.Generators.algebraMap_apply
Matrix.det_submatrix_equiv_self
AlgHom.map_det
Matrix.map_map
MvPolynomial.rename_comp_rename
Equiv.self_comp_symm
MvPolynomial.rename_id
CompTriple.comp_eq
CompTriple.instComp_id
CompTriple.instIsIdId
localizationAway_jacobiMatrix πŸ“–mathematicalβ€”jacobiMatrix
localizationAway
PUnit.fintype
Matrix.diagonal
Algebra.Generators.Ring
Algebra.Presentation.toGenerators
toPresentation
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
β€”map_sub
Derivation.instAddMonoidHomClass
Derivation.leibniz
MvPolynomial.pderiv_X
Pi.single_eq_same
mul_one
MvPolynomial.derivation_C
MulZeroClass.mul_zero
add_zero
Derivation.map_one_eq_zero
sub_zero
Matrix.ext
jacobiMatrix_apply
localizationAway_jacobian πŸ“–mathematicalβ€”jacobian
localizationAway
Finite.of_fintype
PUnit.fintype
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”Finite.of_fintype
jacobian_eq_jacobiMatrix_det
localizationAway_jacobiMatrix
Matrix.det_unique
Matrix.diagonal_apply_eq
Algebra.Generators.algebraMap_apply
MvPolynomial.algHom_C
localizationAway_map πŸ“–mathematicalβ€”map
localizationAway
β€”β€”
map_inj πŸ“–mathematicalβ€”mapβ€”β€”
naive_toPresentation πŸ“–mathematicalβ€”toPresentation
HasQuotient.Quotient
MvPolynomial
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
Ideal.span
Set.range
Ideal.Quotient.commRing
Ideal.instAlgebraQuotient
MvPolynomial.algebra
Algebra.id
naive
Algebra.Presentation.naive
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
ofAlgEquiv_map πŸ“–mathematicalβ€”map
ofAlgEquiv
β€”β€”
ofAlgEquiv_toPresentation πŸ“–mathematicalβ€”toPresentation
ofAlgEquiv
Algebra.Presentation.ofAlgEquiv
β€”β€”
ofBijectiveAlgebraMap_jacobian πŸ“–mathematicalFunction.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
jacobian
ofBijectiveAlgebraMap
Finite.of_fintype
Fintype.instPEmpty
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.ext
Finite.of_fintype
jacobian_eq_jacobiMatrix_det
RingHom.map_det
Matrix.det_one
reindex_map πŸ“–mathematicalβ€”map
reindex
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
reindex_toPresentation πŸ“–mathematicalβ€”toPresentation
reindex
Algebra.Presentation.reindex
β€”β€”
toGenerators_comp πŸ“–mathematicalβ€”Algebra.Presentation.toGenerators
toPresentation
comp
Algebra.Generators.comp
β€”β€”
toPresentation_comp πŸ“–mathematicalβ€”toPresentation
comp
Algebra.Presentation.comp
β€”β€”

Algebra.SubmersivePresentation

Definitions

NameCategoryTheorems
aevalDifferentialEquiv πŸ“–CompOp
1 mathmath: aevalDifferentialEquiv_apply
baseChange πŸ“–CompOpβ€”
basisDeriv πŸ“–CompOp
1 mathmath: basisDeriv_apply
comp πŸ“–CompOpβ€”
id πŸ“–CompOpβ€”
localizationAway πŸ“–CompOp
1 mathmath: basisCotangent_localizationAway_apply
ofAlgEquiv πŸ“–CompOp
1 mathmath: ofAlgEquiv_toPreSubmersivePresentation
ofBijectiveAlgebraMap πŸ“–CompOpβ€”
ofSubsingleton πŸ“–CompOp
6 mathmath: ofSubsingleton_algebra_algebraMap, ofSubsingleton_relation, ofSubsingleton_val, ofSubsingleton_algebra_smul, ofSubsingleton_Οƒ', ofSubsingleton_map
reindex πŸ“–CompOp
1 mathmath: reindex_toPreSubmersivePresentation
toPreSubmersivePresentation πŸ“–CompOp
37 mathmath: cotangentComplexAux_injective, reindex_toPreSubmersivePresentation, ofSubsingleton_algebra_algebraMap, map_jacobianOfHasCoeffs, StandardEtalePresentation.toSubmersivePresentation_toPreSubmersivePresentation_toPresentation, instHasCoeffs, ofSubsingleton_relation, ofAlgEquiv_toPreSubmersivePresentation, jacobianRelations_spec, map_invJacobianOfHasCoeffs, linearIndependent_aeval_val_pderiv_relation, sectionCotangent_eq_iff, StandardEtalePresentation.toSubmersivePresentation_map, coeffs_toPresentation_subset_coeffs, StandardEtalePresentation.toSubmersivePresentation_jacobian, subsingleton_h1Cotangent, ofSubsingleton_val, sum_jacobianRelationsOfHasCoeffs_mul_relationOfHasCoeffs, aeval_jacobianOfHasCoeffs, aeval_invJacobianOfHasCoeffs, basisCotangent_localizationAway_apply, cotangentComplexAux_surjective, basisKaehler_apply, exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, aevalDifferentialEquiv_apply, ofSubsingleton_algebra_smul, ofSubsingleton_Οƒ', rank_kaehlerDifferential, sectionCotangent_comp, jacobian_isUnit, free_cotangent, cotangentComplex_injective, basisCotangent_apply, Algebra.IsStandardSmoothOfRelativeDimension.out, cotangentEquiv_apply, basisDeriv_apply, ofSubsingleton_map

Theorems

NameKindAssumesProvesValidatesDepends On
aevalDifferentialEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
aevalDifferentialEquiv
LinearMap
LinearMap.instFunLike
Algebra.PreSubmersivePresentation.aevalDifferential
toPreSubmersivePresentation
β€”RingHomInvPair.ids
basisDeriv_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
Module.Basis.instFunLike
basisDeriv
AlgHom
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Derivation
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
Algebra.PreSubmersivePresentation.map
Algebra.Presentation.relation
β€”RingHomInvPair.ids
Pi.basisFun_apply
Algebra.PreSubmersivePresentation.aevalDifferential_single
jacobian_isUnit πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.PreSubmersivePresentation.jacobian
toPreSubmersivePresentation
β€”β€”
linearIndependent_aeval_val_pderiv_relation πŸ“–mathematicalβ€”LinearIndependent
DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
Algebra.Generators.val
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Derivation
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
MvPolynomial.module
Derivation.instFunLike
MvPolynomial.pderiv
Algebra.PreSubmersivePresentation.map
Algebra.Presentation.relation
Pi.addCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
β€”Module.Basis.linearIndependent
ofAlgEquiv_toPreSubmersivePresentation πŸ“–mathematicalβ€”toPreSubmersivePresentation
ofAlgEquiv
Algebra.PreSubmersivePresentation.ofAlgEquiv
β€”β€”
ofSubsingleton_algebra_algebraMap πŸ“–mathematicalβ€”Algebra.algebraMap
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.commSemiring
CommSemiring.toSemiring
Algebra.Generators.algebra
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
ofSubsingleton
AlgHom.toRingHom
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Finite.of_fintype
ofSubsingleton_algebra_smul πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
Algebra.toSMul
MvPolynomial.commSemiring
CommSemiring.toSemiring
Algebra.Generators.algebra
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
ofSubsingleton
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
AlgHom.toRingHom
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Finite.of_fintype
ofSubsingleton_map πŸ“–mathematicalβ€”Algebra.PreSubmersivePresentation.map
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
ofSubsingleton
β€”Finite.of_fintype
ofSubsingleton_relation πŸ“–mathematicalβ€”Algebra.Presentation.relation
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
ofSubsingleton
Algebra.Generators.Ring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
RingHom.toAlgebra
MvPolynomial.commSemiring
AlgHom.toRingHom
CommSemiring.toSemiring
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
β€”Finite.of_fintype
ofSubsingleton_val πŸ“–mathematicalβ€”Algebra.Generators.val
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
ofSubsingleton
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Finite.of_fintype
ofSubsingleton_Οƒ' πŸ“–mathematicalβ€”Algebra.Generators.Οƒ'
Algebra.Presentation.toGenerators
Algebra.PreSubmersivePresentation.toPresentation
toPreSubmersivePresentation
Finite.of_fintype
PUnit.fintype
ofSubsingleton
MvPolynomial
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
β€”Finite.of_fintype
reindex_toPreSubmersivePresentation πŸ“–mathematicalβ€”toPreSubmersivePresentation
reindex
Algebra.PreSubmersivePresentation.reindex
β€”β€”

---

← Back to Index