| Name | Category | Theorems |
N π | CompOp | 23 mathmath: submodule_closure_single, submodule_eq_span_le_iff_stable_ge, ext_iff, smul_le, mem_submodule, sSup_N, inf_N, top_N, sInf_N, iInf_N, Stable.exists_pow_smul_eq_of_ge, Stable.exists_pow_smul_eq, submodule_span_single, sup_N, antitone, stable_iff_exists_pow_smul_eq_of_ge, bot_N, pow_smul_le_pow_smul, Ideal.stableFiltration_N, pow_smul_le, mono, Ideal.trivialFiltration_N, iSup_N
|
Stable π | MathDef | 3 mathmath: Ideal.stableFiltration_stable, stable_iff_exists_pow_smul_eq_of_ge, submodule_fg_iff_stable
|
instBot π | CompOp | 1 mathmath: bot_N
|
instCompleteLattice π | CompOp | β |
instInfSet π | CompOp | 2 mathmath: sInf_N, iInf_N
|
instInhabited π | CompOp | β |
instMax π | CompOp | 1 mathmath: sup_N
|
instMin π | CompOp | 4 mathmath: inf_N, inf_submodule, Stable.inter_right, Stable.inter_left
|
instPartialOrder π | CompOp | β |
instSupSet π | CompOp | 2 mathmath: sSup_N, iSup_N
|
instTop π | CompOp | 1 mathmath: top_N
|
submodule π | CompOp | 6 mathmath: submodule_closure_single, submodule_eq_span_le_iff_stable_ge, mem_submodule, inf_submodule, submodule_span_single, submodule_fg_iff_stable
|
submoduleInfHom π | CompOp | β |