Documentation Verification Report

Filtration

πŸ“ Source: Mathlib/RingTheory/Filtration.lean

Statistics

MetricCount
DefinitionsFiltration, N, Stable, instBot, instCompleteLattice, instInfSet, instInhabited, instMax, instMin, instPartialOrder, instSupSet, instTop, submodule, submoduleInfHom, stableFiltration, trivialFiltration, Filtration
17
Theoremsbounded_difference, exists_forall_le, exists_pow_smul_eq, exists_pow_smul_eq_of_ge, inter_left, inter_right, of_le, antitone, bot_N, ext, ext_iff, iInf_N, iSup_N, inf_N, inf_submodule, mem_submodule, mono, pow_smul_le, pow_smul_le_pow_smul, sInf_N, sSup_N, smul_le, stable_iff_exists_pow_smul_eq_of_ge, submodule_closure_single, submodule_eq_span_le_iff_stable_ge, submodule_fg_iff_stable, submodule_span_single, sup_N, top_N, exists_pow_inf_eq_pow_smul, iInf_pow_eq_bot_of_isDomain, iInf_pow_eq_bot_of_isLocalRing, iInf_pow_smul_eq_bot_of_isLocalRing, iInf_pow_smul_eq_bot_of_isTorsionFree, iInf_pow_smul_eq_bot_of_le_jacobson, iInf_pow_smul_eq_bot_of_noZeroSMulDivisors, isIdempotentElem_iff_eq_bot_or_top_of_isLocalRing, mem_iInf_smul_pow_eq_bot_iff, stableFiltration_N, stableFiltration_stable, trivialFiltration_N
41
Total58

Ideal

Definitions

NameCategoryTheorems
Filtration πŸ“–CompData
11 mathmath: Filtration.sSup_N, Filtration.inf_N, Filtration.top_N, Filtration.sInf_N, Filtration.iInf_N, Filtration.inf_submodule, Filtration.sup_N, Filtration.bot_N, Filtration.Stable.inter_right, Filtration.Stable.inter_left, Filtration.iSup_N
stableFiltration πŸ“–CompOp
2 mathmath: stableFiltration_stable, stableFiltration_N
trivialFiltration πŸ“–CompOp
1 mathmath: trivialFiltration_N

Theorems

NameKindAssumesProvesValidatesDepends On
exists_pow_inf_eq_pow_smul πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”Filtration.Stable.exists_pow_smul_eq_of_ge
Filtration.Stable.inter_right
stableFiltration_stable
iInf_pow_eq_bot_of_isDomain πŸ“–mathematicalβ€”iInf
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Bot.bot
Submodule.instBot
β€”IsScalarTower.right
IsScalarTower.left
mul_top
instIsTwoSided_1
iInf_pow_smul_eq_bot_of_isTorsionFree
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
IsDomain.to_noZeroDivisors
Module.Finite.self
iInf_pow_eq_bot_of_isLocalRing πŸ“–mathematicalβ€”iInf
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Bot.bot
Submodule.instBot
β€”IsScalarTower.right
IsScalarTower.left
ext
smul_eq_mul
one_eq_top
mul_one
iInf_pow_smul_eq_bot_of_isLocalRing
Module.Finite.self
iInf_pow_smul_eq_bot_of_isLocalRing πŸ“–mathematicalβ€”iInf
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Bot.bot
Submodule.instBot
β€”iInf_pow_smul_eq_bot_of_le_jacobson
LE.le.trans
IsLocalRing.le_maximalIdeal
IsLocalRing.maximalIdeal_le_jacobson
iInf_pow_smul_eq_bot_of_isTorsionFree πŸ“–mathematicalβ€”iInf
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Bot.bot
Submodule.instBot
β€”IsScalarTower.left
IsScalarTower.right
eq_bot_iff
mem_iInf_smul_pow_eq_bot_iff
smul_left_injective
IsDomain.toIsCancelMulZero
one_smul
Iff.not
eq_top_iff_one
Subtype.prop
iInf_pow_smul_eq_bot_of_le_jacobson πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
CommRing.toRing
Bot.bot
Ring.toSemiring
Submodule.instBot
iInf
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Submodule.instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”IsScalarTower.left
IsScalarTower.right
eq_bot_iff
mem_iInf_smul_pow_eq_bot_iff
isUnit_of_sub_one_mem_jacobson_bot
sub_sub_cancel_left
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClassIdeal
IsUnit.smul_left_cancel
sub_smul
one_smul
sub_self
smul_zero
iInf_pow_smul_eq_bot_of_noZeroSMulDivisors πŸ“–mathematicalβ€”iInf
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Bot.bot
Submodule.instBot
β€”iInf_pow_smul_eq_bot_of_isTorsionFree
isIdempotentElem_iff_eq_bot_or_top_of_isLocalRing πŸ“–mathematicalβ€”IsIdempotentElem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Top.top
Submodule.instTop
β€”IsScalarTower.right
eq_bot_iff
iInf_pow_eq_bot_of_isLocalRing
le_iInf
pow_zero
one_eq_top
IsIdempotentElem.pow_succ_eq
Submodule.mul_bot
mul_top
instIsTwoSided_1
mem_iInf_smul_pow_eq_bot_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
iInf
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.left
IsScalarTower.right
inf_eq_right
LE.le.trans
iInf_le
le_of_eq
Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul
IsNoetherian.noetherian
isNoetherian_of_isNoetherianRing_of_finite
Filtration.Stable.inter_right
stableFiltration_stable
le_refl
Submodule.mem_iInf
pow_zero
one_eq_top
Submodule.top_smul
add_comm
pow_add
smul_smul
pow_one
Submodule.smul_mem_smul
Subtype.prop
stableFiltration_N πŸ“–mathematicalβ€”Filtration.N
stableFiltration
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
β€”β€”
stableFiltration_stable πŸ“–mathematicalβ€”Filtration.Stable
stableFiltration
β€”add_comm
pow_add
IsScalarTower.right
SemigroupAction.mul_smul
pow_one
trivialFiltration_N πŸ“–mathematicalβ€”Filtration.N
trivialFiltration
β€”β€”

Ideal.Filtration

Definitions

NameCategoryTheorems
N πŸ“–CompOp
23 mathmath: submodule_closure_single, submodule_eq_span_le_iff_stable_ge, ext_iff, smul_le, mem_submodule, sSup_N, inf_N, top_N, sInf_N, iInf_N, Stable.exists_pow_smul_eq_of_ge, Stable.exists_pow_smul_eq, submodule_span_single, sup_N, antitone, stable_iff_exists_pow_smul_eq_of_ge, bot_N, pow_smul_le_pow_smul, Ideal.stableFiltration_N, pow_smul_le, mono, Ideal.trivialFiltration_N, iSup_N
Stable πŸ“–MathDef
3 mathmath: Ideal.stableFiltration_stable, stable_iff_exists_pow_smul_eq_of_ge, submodule_fg_iff_stable
instBot πŸ“–CompOp
1 mathmath: bot_N
instCompleteLattice πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
2 mathmath: sInf_N, iInf_N
instInhabited πŸ“–CompOpβ€”
instMax πŸ“–CompOp
1 mathmath: sup_N
instMin πŸ“–CompOp
4 mathmath: inf_N, inf_submodule, Stable.inter_right, Stable.inter_left
instPartialOrder πŸ“–CompOpβ€”
instSupSet πŸ“–CompOp
2 mathmath: sSup_N, iSup_N
instTop πŸ“–CompOp
1 mathmath: top_N
submodule πŸ“–CompOp
6 mathmath: submodule_closure_single, submodule_eq_span_le_iff_stable_ge, mem_submodule, inf_submodule, submodule_span_single, submodule_fg_iff_stable
submoduleInfHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
antitone πŸ“–mathematicalβ€”Antitone
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Nat.instPreorder
PartialOrder.toPreorder
Submodule.instPartialOrder
N
β€”antitone_nat_of_succ_le
mono
bot_N πŸ“–mathematicalβ€”N
Bot.bot
Ideal.Filtration
instBot
Pi.instBotForall
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”β€”
ext πŸ“–β€”Nβ€”β€”IsScalarTower.left
ext_iff πŸ“–mathematicalβ€”Nβ€”ext
iInf_N πŸ“–mathematicalβ€”N
iInf
Ideal.Filtration
instInfSet
Pi.infSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
β€”Set.range_comp
iSup_N πŸ“–mathematicalβ€”N
iSup
Ideal.Filtration
instSupSet
Pi.supSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”Set.range_comp
inf_N πŸ“–mathematicalβ€”N
Ideal.Filtration
instMin
Pi.instMinForall_mathlib
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”β€”
inf_submodule πŸ“–mathematicalβ€”submodule
Ideal.Filtration
instMin
Submodule
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subalgebra
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
reesAlgebra
PolynomialModule
Subalgebra.toSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupPolynomialModule
Subalgebra.moduleLeft
PolynomialModule.polynomialModule
Submodule.instMin
β€”Submodule.ext
mem_submodule πŸ“–mathematicalβ€”PolynomialModule
Submodule
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subalgebra
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
reesAlgebra
Subalgebra.toSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupPolynomialModule
Subalgebra.moduleLeft
PolynomialModule.polynomialModule
Submodule.setLike
submodule
N
DFunLike.coe
Finsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Finsupp.instFunLike
β€”β€”
mono πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
N
β€”β€”
pow_smul_le πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
N
β€”IsScalarTower.left
IsScalarTower.right
pow_zero
Ideal.one_eq_top
Submodule.top_smul
zero_add
pow_succ'
SemigroupAction.mul_smul
add_assoc
add_comm
LE.le.trans
smul_mono_right
Submodule.instCovariantClassHSMulLe_1
smul_le
pow_smul_le_pow_smul πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
N
β€”IsScalarTower.left
IsScalarTower.right
add_comm
pow_add
SemigroupAction.mul_smul
smul_mono_right
Submodule.instCovariantClassHSMulLe_1
pow_smul_le
sInf_N πŸ“–mathematicalβ€”N
InfSet.sInf
Ideal.Filtration
instInfSet
Pi.infSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Set.image
β€”β€”
sSup_N πŸ“–mathematicalβ€”N
SupSet.sSup
Ideal.Filtration
instSupSet
Pi.supSet
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.image
β€”β€”
smul_le πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
N
β€”β€”
stable_iff_exists_pow_smul_eq_of_ge πŸ“–mathematicalβ€”Stable
N
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”IsScalarTower.left
IsScalarTower.right
Stable.exists_pow_smul_eq_of_ge
smul_smul
pow_succ'
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
submodule_closure_single πŸ“–mathematicalβ€”AddSubmonoid.closure
PolynomialModule
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroupPolynomialModule
Set.iUnion
Set.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instFunLike
PolynomialModule.single
SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
N
Submodule.toAddSubmonoid
Polynomial
Subalgebra
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
reesAlgebra
Subalgebra.toSemiring
Subalgebra.moduleLeft
PolynomialModule.polynomialModule
submodule
β€”le_antisymm
AddSubmonoid.closure_le
Set.iUnion_subset_iff
PolynomialModule.single_apply
Submodule.zero_mem
Finsupp.sum_single
AddSubmonoid.sum_mem
AddSubmonoid.subset_closure
Set.subset_iUnion
Set.mem_image_of_mem
submodule_eq_span_le_iff_stable_ge πŸ“–mathematicalβ€”submodule
Submodule.span
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subalgebra
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
reesAlgebra
PolynomialModule
Subalgebra.toSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupPolynomialModule
Subalgebra.moduleLeft
PolynomialModule.polynomialModule
Set.iUnion
Set.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
PolynomialModule.single
SetLike.coe
Submodule
Submodule.setLike
N
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
submodule_span_single
LE.le.ge_iff_eq'
Submodule.span_mono
Set.iUnionβ‚‚_subset_iUnion
Submodule.span_le
Set.iUnion_subset_iff
LE.le.antisymm
smul_le
Finsupp.mem_span_iff_linearCombination
PolynomialModule.single_apply
Finsupp.linearCombination_apply
Finsupp.sum_apply
Submodule.sum_mem
Subalgebra.smul_def
PolynomialModule.smul_single_apply
IsScalarTower.right
pow_smul_le_pow_smul
add_comm
add_tsub_assoc_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
pow_one
tsub_add_cancel_of_le
Submodule.smul_mem_smul
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_iUnionβ‚‚
Submodule.subset_span
zero_le
Submodule.smul_induction_on
PolynomialModule.monomial_smul_single
Submodule.smul_mem
reesAlgebra.monomial_mem
Set.mem_image_of_mem
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
Submodule.add_mem
submodule_fg_iff_stable πŸ“–mathematicalSubmodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
N
Polynomial
Subalgebra
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
reesAlgebra
PolynomialModule
Subalgebra.toSemiring
instAddCommGroupPolynomialModule
Subalgebra.moduleLeft
PolynomialModule.polynomialModule
submodule
Stable
β€”IsScalarTower.left
submodule_eq_span_le_iff_stable_ge
Submodule.FG.stabilizes_of_iSup_eq
Submodule.span_le
Set.iUnionβ‚‚_subset_iff
Set.Subset.trans
Set.subset_iUnionβ‚‚
LE.le.trans
Submodule.subset_span
Submodule.span_iUnion
submodule_span_single
Set.ext
le_refl
Submodule.span_iUnionβ‚‚
iSup_congr_Prop
iSup_subtype'
Submodule.fg_iSup
Finite.of_fintype
Finset.coe_image
Submodule.span_span_of_tower
Subalgebra.isScalarTower_mid
Polynomial.isScalarTower
IsScalarTower.right
PolynomialModule.isScalarTower'
RingHomSurjective.ids
Submodule.map_span
submodule_span_single πŸ“–mathematicalβ€”Submodule.span
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subalgebra
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
reesAlgebra
PolynomialModule
Subalgebra.toSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupPolynomialModule
Subalgebra.moduleLeft
PolynomialModule.polynomialModule
Set.iUnion
Set.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
PolynomialModule.single
SetLike.coe
Submodule
Submodule.setLike
N
submodule
β€”Submodule.span_closure
submodule_closure_single
Submodule.coe_toAddSubmonoid
Submodule.span_eq
sup_N πŸ“–mathematicalβ€”N
Ideal.Filtration
instMax
Pi.instMaxForall_mathlib
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”β€”
top_N πŸ“–mathematicalβ€”N
Top.top
Ideal.Filtration
instTop
Pi.instTopForall
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”β€”

Ideal.Filtration.Stable

Theorems

NameKindAssumesProvesValidatesDepends On
bounded_difference πŸ“–mathematicalIdeal.Filtration.Stable
Ideal.Filtration.N
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”exists_forall_le
le_of_eq
LE.le.trans
Ideal.Filtration.antitone
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
exists_forall_le πŸ“–β€”Ideal.Filtration.Stable
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal.Filtration.N
β€”β€”LE.le.trans
Ideal.Filtration.antitone
zero_add
Nat.instCanonicallyOrderedAdd
add_right_comm
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
smul_mono_right
Submodule.instCovariantClassHSMulLe_1
Ideal.Filtration.smul_le
exists_pow_smul_eq πŸ“–mathematicalIdeal.Filtration.StableIdeal.Filtration.N
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”IsScalarTower.left
IsScalarTower.right
add_zero
pow_zero
Ideal.one_eq_top
Submodule.top_smul
add_assoc
add_comm
pow_add
SemigroupAction.mul_smul
pow_one
exists_pow_smul_eq_of_ge πŸ“–mathematicalIdeal.Filtration.StableIdeal.Filtration.N
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”IsScalarTower.left
IsScalarTower.right
exists_pow_smul_eq
add_comm
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
inter_left πŸ“–mathematicalIdeal.Filtration.StableIdeal.Filtration
Ideal.Filtration.instMin
β€”of_le
inf_le_right
inter_right πŸ“–mathematicalIdeal.Filtration.StableIdeal.Filtration
Ideal.Filtration.instMin
β€”of_le
inf_le_left
of_le πŸ“–β€”Ideal.Filtration.Stable
Ideal.Filtration
Preorder.toLE
PartialOrder.toPreorder
Ideal.Filtration.instPartialOrder
β€”β€”Ideal.Filtration.submodule_fg_iff_stable
IsNoetherian.noetherian
isNoetherian_of_isNoetherianRing_of_finite
isNoetherian_of_fg_of_noetherian
instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra
isNoetherian_submodule
OrderHomClass.mono
InfHomClass.toOrderHomClass
InfHom.instInfHomClass

MeasureTheory

Definitions

NameCategoryTheorems
Filtration πŸ“–CompData
6 mathmath: Filtration.coeFn_sup, Filtration.le_rightCont, Filtration.sSup_def, Filtration.IsRightContinuous.RC, Filtration.coeFn_inf, Filtration.sInf_def

---

← Back to Index