Documentation Verification Report

FinitePresentation

πŸ“ Source: Mathlib/RingTheory/FinitePresentation.lean

Statistics

MetricCount
Definitions0
Theoremscomp, comp_surjective, id, of_comp_finiteType, of_finiteType, of_surjective, of_finitePresentation, equiv, iff, iff_quotient_mvPolynomial', ker_fG_of_surjective, ker_fg_of_mvPolynomial, mvPolynomial, mvPolynomial_of_finitePresentation, of_finiteType, of_restrict_scalars_finitePresentation, of_surjective, out, polynomial, quotient, self, trans, of_finitePresentation, comp, comp_surjective, id, of_bijective, of_comp_finiteType, of_finiteType, of_surjective, polynomial_induction, of_finitePresentation, finitePresentation_algebraMap
33
Total33

AlgHom.FinitePresentation

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”AlgHom.FinitePresentation
AlgHom.comp
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.FinitePresentation.comp
comp_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
AlgHom.FinitePresentation
AlgHom.comp
β€”RingHom.instRingHomClass
RingHom.FinitePresentation.comp_surjective
id πŸ“–mathematicalβ€”AlgHom.FinitePresentation
AlgHom.id
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.FinitePresentation.id
of_comp_finiteType πŸ“–mathematicalβ€”AlgHom.FinitePresentationβ€”RingHom.FinitePresentation.of_comp_finiteType
of_finiteType πŸ“–mathematicalβ€”AlgHom.FiniteType
AlgHom.FinitePresentation
β€”RingHom.FinitePresentation.of_finiteType
of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
AlgHom.FinitePresentationβ€”RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.FinitePresentation.of_surjective

AlgHom.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
of_finitePresentation πŸ“–mathematicalβ€”AlgHom.FiniteTypeβ€”RingHom.FiniteType.of_finitePresentation

Algebra.FinitePresentation

Theorems

NameKindAssumesProvesValidatesDepends On
equiv πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.instRingHomClass
out
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgHom.coe_comp
AlgEquiv.surjective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingHom.ker_eq_comap_bot
Ideal.comap_comap
RingHom.ker_coe_equiv
iff πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.FG
MvPolynomial
MvPolynomial.commSemiring
β€”RingHom.instRingHomClass
equiv
quotient
Finite.of_fintype
iff_quotient_mvPolynomial' πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
β€”RingHom.instRingHomClass
AlgEquiv.surjective
Ideal.fg_ker_comp
AlgHom.ker_coe_equiv
Submodule.fg_bot
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
ker_fG_of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
β€”RingHom.instRingHomClass
out
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.comap_comap
Ideal.map_comap_of_surjective
Ideal.FG.map
ker_fg_of_mvPolynomial
ker_fg_of_mvPolynomial πŸ“–mathematicalMvPolynomial
CommRing.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
β€”RingHom.instRingHomClass
out
Finset.coe_union
Finset.coe_image
Finset.coe_univ
Set.image_univ
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
MvPolynomial.map_aeval
AlgHom.comp_algebraMap
MvPolynomial.aeval_eq_evalβ‚‚Hom
MvPolynomial.aeval_unique
Ideal.span_le
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
sub_self
Ideal.subset_span
LE.le.antisymm
MvPolynomial.adjoin_range_X
Algebra.adjoin_induction
sub_add_cancel
add_comm
AddSubmonoid.add_mem_sup
Set.mem_range_self
Submodule.subset_span
Set.mem_union_left
AddSubmonoid.mem_sup_left
MvPolynomial.aeval_C
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubmonoid.instAddSubmonoidClass
AddSubmonoid.mem_sup
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
add_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
Ideal.mul_mem_left
Submodule.addSubmonoidClass
Set.mem_union_right
Set.mem_image_of_mem
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
add_zero
mvPolynomial πŸ“–mathematicalβ€”Algebra.FinitePresentation
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
β€”trans
MvPolynomial.isScalarTower
IsScalarTower.right
mvPolynomial_of_finitePresentation πŸ“–mathematicalβ€”Algebra.FinitePresentation
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
β€”RingHom.instRingHomClass
iff_quotient_mvPolynomial'
nonempty_fintype
Finite.instSum
Finite.of_fintype
MvPolynomial.map_surjective
AlgEquiv.surjective
Ideal.fg_ker_comp
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.toAlgHom_eq_coe
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgEquiv.toAlgHom_toRingHom
AlgHom.ker_coe_equiv
Submodule.fg_bot
AlgHom.toRingHom_eq_coe
MvPolynomial.mapAlgHom_coe_ringHom
MvPolynomial.ker_map
Ideal.FG.map
of_finiteType πŸ“–mathematicalβ€”Algebra.FiniteType
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.FinitePresentation
β€”Algebra.FiniteType.iff_quotient_mvPolynomial''
RingHom.instRingHomClass
IsNoetherian.noetherian
MvPolynomial.isNoetherianRing
Finite.of_fintype
Algebra.FiniteType.of_finitePresentation
of_restrict_scalars_finitePresentation πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.instRingHomClass
out
AlgHom.range_eq_top
Algebra.adjoin_range_eq_range_aeval
Set.range_comp
Algebra.eq_top_iff
Algebra.adjoin_adjoin_of_tower
Algebra.adjoin_image
MvPolynomial.adjoin_range_X
Algebra.map_top
Algebra.subset_adjoin
Algebra.FiniteType.out
IsScalarTower.subalgebra'
IsScalarTower.right
Algebra.adjoin_union_eq_adjoin_adjoin
Subalgebra.restrictScalars_top
MvPolynomial.isScalarTower
Algebra.adjoin_algebraMap
Subalgebra.restrictScalars_injective
Algebra.adjoin_restrictScalars
Finset.coe_union
Finset.coe_image
Finset.attach_eq_univ
Finset.coe_univ
Set.image_univ
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.span_le
SetLike.mem_coe
RingHom.mem_ker
MvPolynomial.aeval_map_algebraMap
MvPolynomial.aeval_unique
Ideal.subset_span
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
MvPolynomial.aeval_C
sub_self
LE.le.antisymm
Algebra.adjoin_induction
MvPolynomial.algebraMap_eq
sub_add_cancel
add_comm
AddSubmonoid.add_mem_sup
Set.mem_range_self
Set.mem_union_right
AddSubmonoid.mem_sup_left
MvPolynomial.map_X
MvPolynomial.map_C
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubmonoid.instAddSubmonoidClass
AddSubmonoid.mem_sup
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
add_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Ideal.mul_mem_left
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
Set.mem_union_left
Set.mem_image_of_mem
Submodule.addSubmonoidClass
add_zero
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
Algebra.FinitePresentationβ€”RingHom.instRingHomClass
equiv
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instIsTwoSidedKer
quotient
out πŸ“–mathematicalβ€”MvPolynomial
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
Ideal.FG
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
β€”β€”
polynomial πŸ“–mathematicalβ€”Algebra.FinitePresentation
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
β€”equiv
mvPolynomial
self
Finite.of_fintype
trans
Polynomial.isScalarTower
IsScalarTower.right
quotient πŸ“–mathematicalIdeal.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.FinitePresentation
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
β€”RingHom.instRingHomClass
out
Ideal.instIsTwoSided_1
Ideal.Quotient.mkₐ_surjective
Ideal.fg_ker_comp
Ideal.Quotient.mkₐ_ker
self πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Finite.of_fintype
equiv
Empty.instIsEmpty
trans πŸ“–mathematicalβ€”Algebra.FinitePresentation
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”iff
equiv
quotient
mvPolynomial_of_finitePresentation
Finite.of_fintype
Ideal.Quotient.isScalarTower
MvPolynomial.isScalarTower
IsScalarTower.right

Algebra.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
of_finitePresentation πŸ“–mathematicalβ€”Algebra.FiniteType
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.instRingHomClass
Algebra.FinitePresentation.out
iff_quotient_mvPolynomial''

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
finitePresentation_algebraMap πŸ“–mathematicalβ€”FinitePresentation
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.FinitePresentation
β€”FinitePresentation.eq_1
toAlgebra_algebraMap

RingHom.FinitePresentation

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”RingHom.FinitePresentation
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsScalarTower.of_algebraMap_eq'
Algebra.FinitePresentation.trans
comp_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal.FG
RingHom.ker
RingHom.instRingHomClass
RingHom.FinitePresentation
RingHom.comp
β€”RingHom.instRingHomClass
Algebra.FinitePresentation.of_surjective
OneHom.map_one'
MonoidHom.map_mul'
RingHom.map_zero'
RingHom.map_add'
id πŸ“–mathematicalβ€”RingHom.FinitePresentation
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Algebra.FinitePresentation.self
of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.FinitePresentationβ€”of_surjective
RingHom.instRingHomClass
RingHom.injective_iff_ker_eq_bot
Submodule.fg_bot
of_comp_finiteType πŸ“–mathematicalβ€”RingHom.FinitePresentationβ€”IsScalarTower.of_algebraMap_eq'
Algebra.FinitePresentation.of_restrict_scalars_finitePresentation
of_finiteType πŸ“–mathematicalβ€”RingHom.FiniteType
RingHom.FinitePresentation
β€”Algebra.FinitePresentation.of_finiteType
of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal.FG
RingHom.ker
RingHom.instRingHomClass
RingHom.FinitePresentationβ€”RingHom.instRingHomClass
RingHom.comp_id
comp_surjective
id
polynomial_induction πŸ“–β€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
Polynomial.C
RingHom.comp
Semiring.toNonAssocSemiring
β€”β€”RingHom.instRingHomClass
AlgHom.comp_algebraMap
MvPolynomial.C_surjective
Fin.isEmpty'
RingHom.comap_ker
Ideal.comap_symm
Ideal.FG.map
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.surjective
RingHom.comp_assoc
RingHom.ext
MvPolynomial.ext
MvPolynomial.coeff_C
MvPolynomial.aevalTower_C
Polynomial.aeval_C
MvPolynomial.algHom_C

RingHom.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
of_finitePresentation πŸ“–mathematicalβ€”RingHom.FiniteTypeβ€”Algebra.FiniteType.of_finitePresentation

---

← Back to Index