Documentation Verification Report

FiniteType

πŸ“ Source: Mathlib/RingTheory/FiniteType.lean

Statistics

MetricCount
Definitions0
Theoremsexists_finset_adjoin_eq_top, fg_of_finiteType, finiteType_iff_fg, finiteType_iff_group_fg, finiteType_of_fg, freeAlgebra_lift_of_surjective_of_closure, mem_adjoin_support, mvPolynomial_aeval_of_surjective_of_closure, support_gen_of_gen, support_gen_of_gen', finiteType, comp, comp_surjective, id, of_comp_finiteType, of_surjective, adjoin_of_finite, equiv, iff_quotient_freeAlgebra, iff_quotient_freeAlgebra', iff_quotient_mvPolynomial, iff_quotient_mvPolynomial', iff_quotient_mvPolynomial'', instFreeAlgebraOfFinite, instMvPolynomialOfFinite, instPolynomial, isNoetherianRing, of_restrictScalars_finiteType, of_surjective, out, prod, quotient, trans, orzechProperty, finiteType, exists_finset_adjoin_eq_top, fg_of_finiteType, finiteType_iff_fg, finiteType_iff_group_fg, finiteType_of_fg, freeAlgebra_lift_of_surjective_of_closure, mem_adjoin_support, mvPolynomial_aeval_of_surjective_of_closure, support_gen_of_gen, support_gen_of_gen', finiteType, to_finiteType, comp, comp_surjective, id, of_comp_finiteType, of_finite, of_surjective, finiteType_algebraMap, fg_iff_finiteType
55
Total55

AddMonoidAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_adjoin_eq_top πŸ“–mathematicalβ€”Algebra.adjoin
AddMonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebra
Algebra.id
Set.image
of'
SetLike.coe
Finset
Finset.instSetLike
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Finset.coe_biUnion
support_gen_of_gen'
fg_of_finiteType πŸ“–mathematicalβ€”AddMonoid.FGβ€”finiteType_iff_fg
finiteType_iff_fg πŸ“–mathematicalβ€”Algebra.FiniteType
AddMonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebra
Algebra.id
AddMonoid.FG
β€”exists_finset_adjoin_eq_top
AddMonoid.fg_def
AddSubmonoid.eq_top_iff'
mem_closure_of_mem_span_closure
Algebra.adjoin_eq_span
finiteType_of_fg
finiteType_iff_group_fg πŸ“–mathematicalβ€”Algebra.FiniteType
AddMonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
algebra
Algebra.id
AddGroup.FG
β€”finiteType_iff_fg
finiteType_of_fg πŸ“–mathematicalβ€”Algebra.FiniteType
AddMonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebra
Algebra.id
β€”AddMonoid.FG.fg_top
Algebra.FiniteType.of_surjective
Algebra.FiniteType.instFreeAlgebraOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
freeAlgebra_lift_of_surjective_of_closure
freeAlgebra_lift_of_surjective_of_closure πŸ“–mathematicalAddSubmonoid.closure
AddMonoid.toAddZeroClass
Top.top
AddSubmonoid
AddSubmonoid.instTop
FreeAlgebra
Set.Elem
AddMonoidAlgebra
CommSemiring.toSemiring
DFunLike.coe
AlgHom
FreeAlgebra.instSemiring
semiring
FreeAlgebra.instAlgebra
Algebra.id
algebra
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
FreeAlgebra.lift
of'
Set
Set.instMembership
β€”induction_on
AddSubmonoid.mem_top
AddSubmonoid.closure_induction
FreeAlgebra.lift_ΞΉ_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
of_apply
single_mul_single
one_mul
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mem_adjoin_support πŸ“–mathematicalβ€”AddMonoidAlgebra
CommSemiring.toSemiring
Subalgebra
semiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
of'
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Submodule.span_le
Algebra.subset_adjoin
mem_span_support
mvPolynomial_aeval_of_surjective_of_closure πŸ“–mathematicalAddSubmonoid.closure
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Top.top
AddSubmonoid
AddSubmonoid.instTop
MvPolynomial
Set.Elem
AddMonoidAlgebra
CommSemiring.toSemiring
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
commSemiring
MvPolynomial.algebra
Algebra.id
algebra
AlgHom.funLike
MvPolynomial.aeval
of'
Set
Set.instMembership
β€”induction_on
AddSubmonoid.mem_top
AddSubmonoid.closure_induction
MvPolynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
of_apply
single_mul_single
one_mul
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
support_gen_of_gen πŸ“–mathematicalAlgebra.adjoin
AddMonoidAlgebra
CommSemiring.toSemiring
semiring
algebra
Algebra.id
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.iUnion
Set
Set.instMembership
Set.image
of'
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”le_antisymm
le_top
Algebra.adjoin_le_iff
Set.mem_iUnionβ‚‚
Algebra.adjoin_mono
mem_adjoin_support
support_gen_of_gen' πŸ“–mathematicalAlgebra.adjoin
AddMonoidAlgebra
CommSemiring.toSemiring
semiring
algebra
Algebra.id
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.image
of'
Set.iUnion
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Set.image_iUnion
support_gen_of_gen

AlgHom.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
finiteType πŸ“–mathematicalβ€”AlgHom.FiniteTypeβ€”RingHom.Finite.finiteType

AlgHom.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”AlgHom.FiniteType
AlgHom.comp
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.FiniteType.comp
comp_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
AlgHom.FiniteType
AlgHom.comp
β€”RingHom.FiniteType.comp_surjective
id πŸ“–mathematicalβ€”AlgHom.FiniteType
AlgHom.id
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”RingHom.FiniteType.id
of_comp_finiteType πŸ“–mathematicalβ€”AlgHom.FiniteTypeβ€”RingHom.FiniteType.of_comp_finiteType
of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
AlgHom.FiniteTypeβ€”RingHom.FiniteType.of_surjective

Algebra.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_of_finite πŸ“–mathematicalβ€”Algebra.FiniteType
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Subalgebra.toSemiring
Subalgebra.algebra
β€”Subalgebra.fg_iff_finiteType
Set.Finite.coe_toFinset
equiv πŸ“–mathematicalβ€”Algebra.FiniteTypeβ€”of_surjective
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.surjective
iff_quotient_freeAlgebra πŸ“–mathematicalβ€”Algebra.FiniteType
FreeAlgebra
Finset
SetLike.instMembership
Finset.instSetLike
DFunLike.coe
AlgHom
FreeAlgebra.instSemiring
FreeAlgebra.instAlgebra
Algebra.id
AlgHom.funLike
β€”Set.range_eq_univ
AlgHom.coe_range
Algebra.adjoin_range_eq_range_freeAlgebra_lift
Subtype.range_coe_subtype
Finset.setOf_mem
Algebra.coe_top
of_surjective
instFreeAlgebraOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
iff_quotient_freeAlgebra' πŸ“–mathematicalβ€”Algebra.FiniteType
FreeAlgebra
DFunLike.coe
AlgHom
FreeAlgebra.instSemiring
FreeAlgebra.instAlgebra
Algebra.id
AlgHom.funLike
β€”iff_quotient_freeAlgebra
of_surjective
instFreeAlgebraOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
iff_quotient_mvPolynomial πŸ“–mathematicalβ€”Algebra.FiniteType
CommSemiring.toSemiring
MvPolynomial
Finset
Finset.instMembership
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
β€”Set.mem_range
AlgHom.coe_range
Algebra.adjoin_eq_range
Set.mem_univ
of_surjective
instMvPolynomialOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
iff_quotient_mvPolynomial' πŸ“–mathematicalβ€”Algebra.FiniteType
CommSemiring.toSemiring
MvPolynomial
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
β€”iff_quotient_mvPolynomial
of_surjective
instMvPolynomialOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
iff_quotient_mvPolynomial'' πŸ“–mathematicalβ€”Algebra.FiniteType
CommSemiring.toSemiring
MvPolynomial
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
β€”iff_quotient_mvPolynomial'
of_surjective
instMvPolynomialOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
instFreeAlgebraOfFinite πŸ“–mathematicalβ€”Algebra.FiniteType
FreeAlgebra
FreeAlgebra.instSemiring
FreeAlgebra.instAlgebra
β€”nonempty_fintype
trans
FreeAlgebra.instIsScalarTower
IsScalarTower.right
Finset.coe_image
Finset.coe_univ
Set.image_univ
FreeAlgebra.adjoin_range_ΞΉ
instMvPolynomialOfFinite πŸ“–mathematicalβ€”Algebra.FiniteType
MvPolynomial
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
β€”nonempty_fintype
trans
MvPolynomial.isScalarTower
IsScalarTower.right
Finset.coe_image
Finset.coe_univ
Set.image_univ
MvPolynomial.adjoin_range_X
instPolynomial πŸ“–mathematicalβ€”Algebra.FiniteType
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
β€”trans
Polynomial.isScalarTower
IsScalarTower.right
Finset.coe_singleton
Polynomial.adjoin_X
isNoetherianRing πŸ“–mathematicalβ€”IsNoetherianRing
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”out
isNoetherianRing_of_surjective
Set.range_eq_univ
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
RingHom.coe_coe
AlgHom.coe_range
Algebra.adjoin_range_eq_range_aeval
Subtype.range_coe_subtype
Finset.setOf_mem
MvPolynomial.isNoetherianRing
Finite.of_fintype
of_restrictScalars_finiteType πŸ“–mathematicalβ€”Algebra.FiniteTypeβ€”out
Algebra.eq_top_iff
Algebra.adjoin_le
Algebra.subset_adjoin
of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Algebra.FiniteTypeβ€”Algebra.map_top
Subalgebra.FG.map
out
out πŸ“–mathematicalβ€”Subalgebra.FG
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
prod πŸ“–mathematicalβ€”Algebra.FiniteType
Prod.instSemiring
Prod.algebra
β€”Subalgebra.prod_top
Subalgebra.FG.prod
out
quotient πŸ“–mathematicalβ€”Algebra.FiniteType
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
β€”trans
Ideal.Quotient.isScalarTower
IsScalarTower.right
Module.Finite.finiteType
Module.Finite.quotient
Module.Finite.self
trans πŸ“–mathematicalβ€”Algebra.FiniteTypeβ€”Algebra.fg_trans'
out

CommRing

Theorems

NameKindAssumesProvesValidatesDepends On
orzechProperty πŸ“–mathematicalβ€”OrzechProperty
CommSemiring.toSemiring
toCommSemiring
β€”Submodule.injective_subtype
LinearMap.ker_eq_bot
LinearMap.ker_eq_bot'
Module.Finite.exists_fin
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
Module.surjective_piEquiv_apply_iff
SubringClass.toSubsemiringClass
Subring.instSubringClass
Submodule.subset_span
LinearMap.IsScalarTower.compatibleSMul
Subring.instIsScalarTowerSubtypeMem
Submodule.isScalarTower'
IsScalarTower.left
Submodule.span_induction
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_add
SemilinearMapClass.toAddHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Submodule.smul_mem
IsNoetherian.injective_of_surjective_of_injective
isNoetherian_of_isNoetherianRing_of_finite
is_noetherian_subring_closure
Set.Finite.union
Set.finite_range
Finite.instProd
Module.Finite.span_of_finite
Module.piEquiv_apply_apply
Submodule.sum_mem
Subring.subset_closure
RingHomSurjective.ids
Subtype.val_injective

Module.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
finiteType πŸ“–mathematicalβ€”Algebra.FiniteTypeβ€”Subalgebra.fg_of_submodule_fg
fg_top

MonoidAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_adjoin_eq_top πŸ“–mathematicalβ€”Algebra.adjoin
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebra
Algebra.id
Set.image
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
SetLike.coe
Finset
Finset.instSetLike
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Finset.coe_biUnion
support_gen_of_gen'
fg_of_finiteType πŸ“–mathematicalβ€”Monoid.FGβ€”finiteType_iff_fg
finiteType_iff_fg πŸ“–mathematicalβ€”Algebra.FiniteType
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebra
Algebra.id
Monoid.FG
β€”Monoid.fg_iff_add_fg
AddMonoidAlgebra.finiteType_iff_fg
Algebra.FiniteType.equiv
finiteType_of_fg
finiteType_iff_group_fg πŸ“–mathematicalβ€”Algebra.FiniteType
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
algebra
Algebra.id
Group.FG
β€”finiteType_iff_fg
finiteType_of_fg πŸ“–mathematicalβ€”Algebra.FiniteType
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebra
Algebra.id
β€”Algebra.FiniteType.equiv
AddMonoidAlgebra.finiteType_of_fg
AddMonoid.fg_of_monoid_fg
freeAlgebra_lift_of_surjective_of_closure πŸ“–mathematicalSubmonoid.closure
Monoid.toMulOneClass
Top.top
Submonoid
Submonoid.instTop
FreeAlgebra
Set.Elem
MonoidAlgebra
CommSemiring.toSemiring
DFunLike.coe
AlgHom
FreeAlgebra.instSemiring
semiring
FreeAlgebra.instAlgebra
Algebra.id
algebra
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
FreeAlgebra.lift
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
Set
Set.instMembership
β€”induction_on
Submonoid.mem_top
Submonoid.closure_induction
FreeAlgebra.lift_ΞΉ_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
of_apply
single_mul_single
one_mul
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mem_adjoin_support πŸ“–mathematicalβ€”MonoidAlgebra
CommSemiring.toSemiring
Subalgebra
semiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Submodule.span_le
Algebra.subset_adjoin
mem_span_support
mvPolynomial_aeval_of_surjective_of_closure πŸ“–mathematicalSubmonoid.closure
Monoid.toMulOneClass
CommMonoid.toMonoid
Top.top
Submonoid
Submonoid.instTop
MvPolynomial
Set.Elem
MonoidAlgebra
CommSemiring.toSemiring
DFunLike.coe
AlgHom
MvPolynomial.commSemiring
commSemiring
MvPolynomial.algebra
Algebra.id
algebra
AlgHom.funLike
MvPolynomial.aeval
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
Set
Set.instMembership
β€”induction_on
Submonoid.mem_top
Submonoid.closure_induction
MvPolynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
of_apply
single_mul_single
one_mul
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
support_gen_of_gen πŸ“–mathematicalAlgebra.adjoin
MonoidAlgebra
CommSemiring.toSemiring
semiring
algebra
Algebra.id
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.iUnion
Set
Set.instMembership
Set.image
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”le_antisymm
le_top
Algebra.adjoin_le_iff
Set.mem_iUnionβ‚‚
Algebra.adjoin_mono
mem_adjoin_support
support_gen_of_gen' πŸ“–mathematicalAlgebra.adjoin
MonoidAlgebra
CommSemiring.toSemiring
semiring
algebra
Algebra.id
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.image
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
nonAssocSemiring
MonoidHom.instFunLike
of
Set.iUnion
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Set.image_iUnion
support_gen_of_gen

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
finiteType_algebraMap πŸ“–mathematicalβ€”FiniteType
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.FiniteType
β€”FiniteType.eq_1
toAlgebra_algebraMap

RingHom.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
finiteType πŸ“–mathematicalβ€”RingHom.FiniteTypeβ€”Module.Finite.finiteType
to_finiteType πŸ“–mathematicalβ€”RingHom.FiniteTypeβ€”RingHom.FiniteType.of_finite

RingHom.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”RingHom.FiniteType
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsScalarTower.of_algebraMap_eq'
Algebra.FiniteType.trans
comp_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.FiniteType
RingHom.comp
β€”Algebra.FiniteType.of_surjective
OneHom.map_one'
MonoidHom.map_mul'
RingHom.map_zero'
RingHom.map_add'
id πŸ“–mathematicalβ€”RingHom.FiniteType
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Module.Finite.finiteType
Module.Finite.self
of_comp_finiteType πŸ“–mathematicalβ€”RingHom.FiniteTypeβ€”IsScalarTower.of_algebraMap_eq'
Algebra.FiniteType.of_restrictScalars_finiteType
of_finite πŸ“–mathematicalβ€”RingHom.FiniteTypeβ€”Module.Finite.finiteType
of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.FiniteTypeβ€”RingHom.comp_id
comp_surjective
id

Subalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
fg_iff_finiteType πŸ“–mathematicalβ€”FG
Algebra.FiniteType
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
β€”fg_top
Algebra.FiniteType.out

---

← Back to Index