📁 Source: Mathlib/RingTheory/Finiteness/Nakayama.lean
exists_mem_and_smul_eq_self_of_fg_of_le_smul
exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
FG
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ideal
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SetLike.instMembership
setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
neg_mem
neg_sub
sub_smul
one_smul
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
fg_def
smulCommClass_self
sub_self
Ideal.zero_mem
mem_comap
span_le
le_refl
Set.Finite.induction_on
mem_bot
smul_bot
span_empty
mem_sup
smul_sup
span_union
Set.singleton_union
Set.insert_subset_iff
mem_smul_span_singleton
Ideal.instIsTwoSided_1
sub_right_comm
Ideal.sub_mem
add_sub_cancel_left
mul_sub
mul_one
sub_add_sub_cancel
Ideal.add_mem
Ideal.mul_mem_left
SemigroupAction.mul_smul
smul_add
smul_smul
mul_comm
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
addSubmonoidClass
smul_mem
---
← Back to Index