Documentation Verification Report

Subalgebra

📁 Source: Mathlib/RingTheory/Finiteness/Subalgebra.lean

Statistics

MetricCount
DefinitionsSubalgebra
1
Theoremsfg_bot_toSubmodule, finite_bot, mul, pow, fg_of_isUnit, fg_unit
6
Total7

Subalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
fg_bot_toSubmodule 📖mathematicalSubmodule.FG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Finset.coe_singleton
Algebra.toSubmodule_bot
Submodule.one_eq_span
finite_bot 📖mathematicalModule.Finite
Subalgebra
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toSemiring
instModuleSubtypeMem
Module.Finite.range
Module.Finite.self

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
fg_of_isUnit 📖mathematicalIsUnit
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
FGfg_unit
fg_unit 📖mathematicalFG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Units.val
Submodule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
mem_span_mul_finite_of_mem_mul
one_le
le_rfl
Units.mul_inv
span_eq_of_le
one_mul
mul_one
IsScalarTower.right
Units.inv_mul
mul_assoc
le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
instMulRightMono
mul_le_mul_right
instMulLeftMono
span_le
Units.val_mul
Units.val_one
span_mul_span

Submodule.FG

Theorems

NameKindAssumesProvesValidatesDepends On
mul 📖mathematicalSubmodule.FG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule
Submodule.mul
IsScalarTower.right
IsScalarTower.right
Algebra.to_smulCommClass
Submodule.mul_eq_map₂
map₂
pow 📖mathematicalSubmodule.FG
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule
Submodule.instPowNat
IsScalarTower.right
IsScalarTower.right
Finset.coe_singleton
pow_zero
Submodule.one_eq_span
pow_succ
mul

(root)

Definitions

NameCategoryTheorems
Subalgebra 📖CompData
868 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, Subalgebra.mem_restrictScalars, IsCyclotomicExtension.adjoin_primitive_root_eq_top, Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, Algebra.range_ofId, exists_fg_and_mem_baseChange, StarSubalgebra.mem_toSubalgebra, Subalgebra.LinearDisjoint.inf_eq_bot, Subalgebra.mulMap_comm, AlgHom.mem_range_self, Submodule.rTensorOne_symm_apply, minpoly.ToAdjoin.injective, Algebra.RingHom.adjoin_algebraMap_apply, Ideal.Filtration.submodule_closure_single, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right, Localization.subalgebra.isLocalization_subalgebra, Ideal.Filtration.submodule_eq_span_le_iff_stable_ge, Algebra.lift_cardinalMk_adjoin_le, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, StarAlgEquiv.ofInjective_symm_apply, integralClosure_le_span_dualBasis, Polynomial.mem_lifts_iff_mem_alg, Subalgebra.adjoin_rank_le, AlgebraicIndependent.transcendental_adjoin_iff, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, Algebra.mem_iInf, Algebra.FiniteType.adjoin_of_finite, algebraicIndependent_adjoin, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, Subalgebra.toSubmodule_injective, ContinuousMap.abs_mem_subalgebra_closure, ValuationSubring.integralClosure_algebraMap_injective, IsCyclotomicExtension.mem_of_pow_eq_one, Algebra.TensorProduct.includeLeft_map_center_le, Submodule.comm_trans_lTensorOne, IsDedekindDomain.HeightOneSpectrum.iInf_localization_eq_bot, spinGroup.mem_even, Subalgebra.mem_op, Algebra.adjoin_algebraMap_image_union_eq_adjoin_adjoin, Algebra.adjoin_singleton_intCast, mem_reesAlgebra_iff_support, Subalgebra.LinearDisjoint.sup_free_of_free, Subalgebra.pi_top, mem_subalgebraEquivIntermediateField, AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, jacobiSum_mem_algebraAdjoin_of_pow_eq_one, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, Algebra.mem_top, integralClosure_le_completeIntegralClosure, CliffordAlgebra.even.lift.aux_mul, Algebra.finite_adjoin_simple_of_isIntegral, MulChar.apply_mem_algebraAdjoin_of_pow_eq_one, Submodule.mulMap_one_right_eq, Localization.isFractionRing_range_mapToFractionRing, Subalgebra.comap_map_eq, Subalgebra.finrank_sup_eq_finrank_right_mul_finrank_of_free, Subalgebra.op_sSup, TensorProduct.toIntegralClosure_bijective_of_isLocalization, integralClosure.AlgebraIsIntegral, Subalgebra.equivOfEq_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, TensorAlgebra.adjoin_range_ι, AlgHom.equalizer_eq_top, DualNumber.range_lift, AlgebraicIndependent.transcendental_adjoin, Subalgebra.star_adjoin_comm, AlgHom.rangeRestrict_surjective, Subalgebra.mem_algebraicClosure, Algebra.IsIntegral.adjoin, Subalgebra.topologicalClosure_coe, Localization.isLocalization_range_mapToFractionRing, Subalgebra.coe_center, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, Subalgebra.op_sInf, AlgHom.coe_mapIntegralClosure, adjoin_le_integralClosure, StarSubalgebra.inf_toSubalgebra, Polynomial.subalgebraNontrivial, Algebra.sSup_def, AlgebraicIndependent.repr_ker, Set.unitEquivUnitsInteger_symm_apply_coe, ContinuousMap.continuousMap_mem_subalgebra_closure_of_separatesPoints, UnitAddTorus.mFourierSubalgebra_coe, Algebra.toSubsemiring_eq_top, Subalgebra.op_bot, AlgEquiv.ofInjective_apply, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, Algebra.mem_sInf, Algebra.adjoin_singleton_algebraMap, polynomialFunctions.le_equalizer, integralClosure.isIntegrallyClosedOfFiniteExtension, Subalgebra.SeparatesPoints.strongly, Subalgebra.centralizer_coe_iSup, Algebra.toSubring_eq_top, NumberField.adjoin_eq_top_of_infinitePlace_lt, Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free, Subalgebra.mem_center_iff, Polynomial.IsSplittingField.splits_iff, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, AlgebraicIndependent.iff_adjoin_image_compl, MulChar.apply_mem_algebraAdjoin, Subalgebra.coe_one, MvPolynomial.supportedEquivMvPolynomial_symm_X, Subalgebra.toSubring_injective, Submodule.coe_toSubalgebra, Subalgebra.aeval_coe, StarSubalgebra.bot_toSubalgebra, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_left, Polynomial.lift_of_splits, Subalgebra.mulMap_toLinearMap, Ideal.Filtration.mem_submodule, Algebra.mem_adjoin_iff, Algebra.elemental.le_iff_mem, Algebra.toSubring_bot, AlgHom.le_equalizer, integralClosure_eq_top_iff, Subalgebra.instIsTorsionFree', MonoidAlgebra.mem_adjoin_support, RingCon.quotientKerEquivRangeₐ_comp_mkₐ, Algebra.map_sup, IntermediateField.algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, Subalgebra.coe_pointwise_smul, Submonoid.adjoin_eq_span_of_eq_span, RingCon.coe_comapQuotientEquivRangeₐ_mk, Subalgebra.algebra_isAlgebraic_bot_right, FunctionField.ringOfIntegers.instIsIntegralClosureSubtypeMemSubalgebraPolynomial, Subalgebra.val_apply, AlgebraicIndependent.matroid_isBasis_iff, AlgHom.coe_range, mem_subalgebraOfSubsemiring, Subalgebra.unop_sup, Subalgebra.comm_trans_rTensorBot, Subalgebra.mulMap_map_comp_eq, Subalgebra.algebra_isAlgebraic_bot_left_iff, Algebra.elemental.isClosedEmbedding_coe, Algebra.EssFiniteType.adjoin_mem_finset, IsScalarTower.adjoin_range_toAlgHom, Algebra.adjoin_attach_biUnion, TensorProduct.toIntegralClosure_bijective_of_smooth, Polynomial.IsSplittingField.adjoin_rootSet, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, spinGroup.mem_iff, IntermediateField.isAlgebraic_adjoin_iff_top, Subalgebra.prod_inf_prod, IntermediateField.inf_toSubalgebra, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, AlgHom.val_comp_rangeRestrict, AlgebraicIndependent.aeval_comp_repr, Algebra.span_le_adjoin, Subalgebra.center_eq_top, IsIntegrallyClosedIn.integralClosure_eq_bot, integralClosure_idem, Algebra.adjoin_adjoin_of_tower, AlgebraicIndependent.adjoin_iff_disjoint, Algebra.mem_bot, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, IsPrimitiveRoot.powerBasis_gen_mem_adjoin_zeta_sub_one, Algebra.adjoin_union, AlgHom.range_comp_le_range, Algebra.coe_iInf, IntermediateField.isAlgebraic_adjoin_iff, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, Subalgebra.mem_toSubmodule, Localization.subalgebra.mem_range_mapToFractionRing_iff_ofField, AlgebraicIndependent.matroid_spanning_iff, Subalgebra.zero_mem, Polynomial.SplittingFieldAux.adjoin_rootSet, Subalgebra.range_isScalarTower_toAlgHom, Subalgebra.coe_sub, integralClosure.isDedekindDomain, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, instSMulDistribClassSubtypeMemSubalgebraIntegralClosure, IntermediateField.coe_toSubalgebra, Field.Emb.Cardinal.succEquiv_coherence, IntermediateField.bot_toSubalgebra, AlgebraicGeometry.Scheme.Hom.ι_toNormalization, Algebra.toSubmodule_bot, prod_mem_ideal_map_of_mem_conductor, Algebra.map_bot, mem_adjoin_map_integralClosure_of_isStandardEtale, Polynomial.aeval_subalgebra_coe, IntermediateField.sup_toSubalgebra_of_isAlgebraic_left, Algebra.adjoin_singleton_zero, Algebra.coe_bot, Subalgebra.mopAlgEquivOp_symm_apply, monomial_mem_adjoin_monomial, Algebra.sInf_toSubsemiring, Algebra.sInf_toSubmodule, Algebra.elemental.instCompleteSpaceSubtypeMemSubalgebra, Algebra.subset_adjoin, MvPolynomial.adjoin_range_X, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, TensorProduct.Algebra.exists_of_fg, continuousMap_mem_polynomialFunctions_closure, FunctionField.classNumber_eq_one_iff, Subalgebra.le_centralizer_iff, Subalgebra.coe_mul, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, Subalgebra.instIsTorsionFree, IsDedekindDomain.integer_empty, adjoin_eq_top_of_conductor_eq_top, MvPolynomial.transcendental_supported_X_iff, Subalgebra.LinearDisjoint.rank_sup_of_free, HahnSeries.instNontrivialSubalgebra, Subalgebra.finrank_toSubmodule, Subalgebra.algebraMap_def, Algebra.coe_top, Subalgebra.isIdempotentElem_toSubmodule, Subalgebra.unop_top, Algebra.TensorProduct.includeRight_map_center_le, AlgebraicIndependent.sumElim_iff, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, Subalgebra.lTensorBot_one_tmul, StarAlgebra.adjoin_nonUnitalStarSubalgebra_eq_span, Subalgebra.isSimpleOrder_of_finrank, Matrix.isRepresentation.toEnd_represents, span_coeff_minpolyDiv, Subalgebra.mulMap_bot_left_eq, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, Subalgebra.op_inf, Subalgebra.isScalarTower_right, CliffordAlgebra.coe_toEven_reverse_involute, Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, Polynomial.adjoin_rootSet_eq_range, Subalgebra.coe_op, IntermediateField.sup_toSubalgebra_of_isAlgebraic, Subalgebra.separatesPoints_monotone, integralClosure.isFractionRing_of_finite_extension, Algebra.top_toSubmodule, AlgHom.coe_tensorEqualizer, Subalgebra.isSeparable_iff, TensorProduct.toIntegralClosure_mvPolynomial_bijective, Subalgebra.fg_of_submodule_fg, AlgebraicIndependent.adjoin_of_disjoint, Subalgebra.valA_apply, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', Algebra.essFiniteType_cond_iff, CliffordAlgebra.adjoin_range_ι, Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, Algebra.elemental.le_centralizer_centralizer, integralClosure_le_algebraicClosure, Polynomial.Splits.adjoin_rootSet_eq_range, IntermediateField.sInf_toSubalgebra, IsFractionRing.algHom_fieldRange_eq_of_comp_eq, Set.coe_integer, Algebra.map_inf, Algebra.Presentation.coeffs_subset_core, mem_subalgebraEquivIntermediateField_symm, Algebra.adjoin.powerBasis_dim, Algebra.Presentation.coeffs_relation_subset_core, Algebra.sup_toSubsemiring, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, Subalgebra.instCovariantClassHSMulLe, AlgHom.ker_rangeRestrict, Subalgebra.mvPolynomial_aeval_coe, Subalgebra.mem_starClosure, Submodule.toSubalgebra_toSubmodule, AdjoinRoot.Minpoly.coe_toAdjoin, Subalgebra.le_centralizer_centralizer, mem_conductor_iff, Subalgebra.finrank_right_dvd_finrank_sup_of_free, FiniteDimensional.of_subalgebra_toSubmodule, IsIntegral.mem_range_algHom_of_minpoly_splits, AlgebraicIndependent.subalgebraAlgebraicClosure, FractionalIdeal.adjoinIntegral_coe, PrimeSpectrum.iInf_localization_eq_bot, Subalgebra.mul_toSubmodule, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, Algebra.adjoin_nonUnitalSubalgebra_eq_span, Subalgebra.unop_bot, isNoetherian_adjoin_finset, ContinuousMap.sup_mem_closed_subalgebra, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, mem_completeIntegralClosure, FunctionField.ringOfIntegers.instIsDomainSubtypeMemSubalgebraPolynomial, Subalgebra.linearEquivOp_apply_coe, Subalgebra.gc_map_comap, roots_mem_integralClosure, Algebra.bijective_algebraMap_iff, CommRingCat.Under.tensorProdEqualizer_ι, Subalgebra.topEquiv_apply, Subalgebra.mem_carrier, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, NumberField.house.exists_ne_zero_int_vec_house_le, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, Subalgebra.mem_saturation_iff, isCyclotomicExtension_iff_eq_adjoin, AlgHom.mem_range, Algebra.iSup_toSubsemiring, FractionalIdeal.isFractional_adjoin_integral, Subalgebra.range_val, AlgEquiv.ofLeftInverse_apply, MvPolynomial.mem_supported, MvPolynomial.rename_esymmAlgHom, mem_integralClosure_iff_mem_fg, CliffordAlgebra.even.lift_ι, PowerBasis.adjoin_gen_eq_top, coeff_minpolyDiv_mem_adjoin, mem_subalgebraOfSubring, ContinuousMap.exists_mem_subalgebra_near_continuousMap_of_separatesPoints, Subalgebra.mulMap'_surjective, Submodule.comm_trans_rTensorOne, Subalgebra.coe_equivMapOfInjective_apply, Subalgebra.mem_map, Subalgebra.adjoin_eq_span_basis, Subalgebra.isField_of_algebraic, FunctionField.ringOfIntegers.instIsIntegrallyClosedSubtypeMemSubalgebraPolynomial, Algebra.adjoin.powerBasis'_dim, AlgebraicIndependent.isAlgebraic_adjoin_iff_of_matroid_isBasis, Matrix.isRepresentation.toEnd_exists_mem_ideal, instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra, Subalgebra.coe_algebraMap, Algebra.top_toSubring, IntermediateField.mem_adjoin_iff_div, CliffordAlgebra.even.algHom_ext_iff, IntermediateField.top_toSubalgebra, Subalgebra.finrank_left_dvd_finrank_sup_of_free, Submodule.lTensorOne'_tmul, Localization.subalgebra.isLocalization_ofField, Submodule.rTensorOne'_tmul_one, AlgEquiv.coe_mapIntegralClosure, CliffordAlgebra.toEven_comp_ofEven, le_integralClosure_iff_isIntegral, Subalgebra.unop_sSup, Subalgebra.topologicalClosure_map_le, reesAlgebra.monomial_mem, Ideal.Filtration.inf_submodule, Submodule.rTensorOne'_tmul, Subalgebra.mul_toSubmodule_le, Subalgebra.unop_le_unop_iff, Module.Flat.instSubalgebraToSubmodule, MvPolynomial.esymmAlgHom_fin_surjective, PowerSeries.instNontrivialSubalgebra, integralClosure.isNoetherianRing, IntermediateField.finrank_eq_finrank_subalgebra, Subalgebra.smulCommClass_right, ContinuousAlgHom.eqOn_closure_adjoin, ContinuousMap.sup_mem_subalgebra_closure, conductor_subset_adjoin, exists_jacobiSum_eq_neg_one_add, Derivation.eqOn_adjoin, Algebra.adjoin_toSubmodule_le, Algebra.adjoin_eq_top_of_primitive_element, Subalgebra.starClosure_eq_adjoin, Algebra.Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, Algebra.zariskisMainProperty_iff_exists_saturation_eq_top, MvPolynomial.supported_strictMono, Set.val_unitEquivUnitsInteger_apply_coe, MonoidAlgebra.exists_finset_adjoin_eq_top, Subalgebra.LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, ContinuousMap.inf_mem_subalgebra_closure, Algebra.TensorProduct.productMap_range, IsScalarTower.subalgebra, Subalgebra.equivOfEq_rfl, ContinuousMap.inf_mem_closed_subalgebra, IsIntegrallyClosed.integralClosure_eq_bot, Ideal.Filtration.submodule_span_single, IsIntegrallyClosed.integralClosure_eq_bot_iff, Polynomial.IsSplittingField.adjoin_rootSet', Algebra.EssFiniteType.isLocalization, Subalgebra.starClosure_le_iff, Subalgebra.fg_iff_finiteType, MvPolynomial.supported_mono, Submodule.rTensorOne_tmul, Subalgebra.isScalarTower_left, ContinuousMap.exists_mem_subalgebra_near_continuous_of_isCompact_of_separatesPoints, Subalgebra.intCast_mem, Algebra.elemental.self_mem, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, instIsInvariantSubtypeMemSubalgebraSubalgebraSubgroupQuotient, Subalgebra.toIsStrictOrderedRing, Subalgebra.noZeroDivisors, Subalgebra.unop_iInf, Algebra.adjoin.powerBasis_gen, NumberField.RingOfIntegers.mk_zero, MvPowerSeries.instNontrivialSubalgebraOfNonempty, Subalgebra.coe_matrix, Algebra.inf_toSubmodule, Subalgebra.coe_star, MvPolynomial.mem_supported_vars, AlgebraicIndependent.option_iff_transcendental, AlgHom.range_eq_top, Algebra.adjoin_singleton_one, Algebra.iInf_toSubsemiring, Subalgebra.mem_mk, Algebra.adjoin_eq_span_of_subset, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left, Algebra.discr_mul_isIntegral_mem_adjoin, Ideal.IntegralClosure.isMaximal_of_isMaximal_comap, Subalgebra.restrictScalars_injective, Subalgebra.coe_restrictScalars, AlgebraicIndependent.algebraMap_aevalEquiv, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, IsCyclotomicExtension.iff_singleton, Subalgebra.linearDisjoint_iff, Subalgebra.centralizer_eq_top_iff_subset, Subalgebra.unop_inf, Algebra.top_toSubsemiring, Subalgebra.rTensorBot_tmul_one, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, Subalgebra.map_le, Subalgebra.algebraMap_eq, instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure, AlgHom.tensorEqualizerEquiv_apply, mem_integralClosure_iff, Algebra.finite_adjoin_of_finite_of_isIntegral, Subalgebra.finrank_sup_eq_finrank_left_mul_finrank_of_free, IsIntegrallyClosedIn.integralClosure_eq_bot_iff, StarSubalgebra.toSubalgebra_injective, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree, Algebra.adjoin_insert_adjoin, Subalgebra.finrank_sup_le_of_free, Subalgebra.starClosure_toSubalgebra, ValuationSubring.isIntegral_of_mem_ringOfIntegers', Subalgebra.map_toSubmodule, Subalgebra.coe_ofClass, Subalgebra.map_injective, Subalgebra.mem_unop, IntermediateField.isTranscendenceBasis_adjoin_iff, CliffordAlgebra.evenToNeg_ι, Submodule.rTensorOne_tmul_one, Subalgebra.coe_toSubsemiring, integralClosure.isFractionRing_of_algebraic, Algebra.small_adjoin, Ring.DimensionLEOne.integralClosure, Submodule.span_range_natDegree_eq_adjoin, Algebra.adjoin_eq_exists_aeval, Subalgebra.op_top, Subalgebra.coe_smul, Subalgebra.instFaithfulSMulSubtypeMem, AlgebraicIndepOn.insert_iff, Algebra.adjoin_singleton_natCast, Subalgebra.centralizer_le, RingCon.coe_comapQuotientEquivRangeₐ_symm_mk, Subalgebra.finite_sup, Subalgebra.coe_eq_one, Subalgebra.op_iInf, Subalgebra.bot_eq_top_iff_finrank_eq_one, Subalgebra.coe_val, Subalgebra.mulMap_bot_right_eq, Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, AddMonoidAlgebra.exists_finset_adjoin_eq_top, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, Subalgebra.coe_map, Subalgebra.op_le_iff, Algebra.iInf_toSubmodule, fourierSubalgebra_coe, Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free, Algebra.isAlgebraic_iff, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, Subalgebra.lTensorBot_symm_apply, Module.End.exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow, Algebra.Etale.exists_subalgebra_fg, FreeAlgebra.adjoin_range_ι, ContinuousMap.subalgebra_topologicalClosure_eq_top_of_separatesPoints, Subalgebra.coe_valA, Subalgebra.inclusion_self, Subalgebra.finiteDimensional_toSubmodule, NumberField.RingOfIntegers.mk_one, Algebra.TensorProduct.map_range, Subalgebra.isScalarTower_mid, RingCon.comapQuotientEquivRangeₐ_mk, Submodule.range_valA, Subalgebra.toSubsemiring_injective, Subalgebra.toSubmodule_toSubalgebra, StarSubalgebra.coe_mk, isAlgebraic_iff_exists_isTranscendenceBasis_subset, FunctionField.ringOfIntegers.instIsDedekindDomainSubtypeMemSubalgebraPolynomialOfIsSeparableRatFunc, IntermediateField.sup_toSubalgebra_of_left, StarSubalgebra.toSubalgebra_le_iff, StarSubalgebra.toSubalgebra_eq_top, Algebra.adjoin_union_coe_submodule, isCyclotomicExtension_singleton_iff_eq_adjoin, Submodule.mulMap_one_left_eq, AlgebraicIndependent.aeval_repr, Subalgebra.algEquivOpMop_apply, Subalgebra.coe_neg, IsCyclotomicExtension.instSubsingleton, instIsTopologicalSemiringSubtypeMemSubalgebra, IntermediateField.toSubalgebra_injective, Algebra.IsCentral.mem_center_iff, AlgHom.eqOn_adjoin_iff, Algebra.adjoin_adjoin_coe_preimage, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, CliffordAlgebra.ofEven_comp_toEven, Subalgebra.le_topologicalClosure, fg_adjoin_of_finite, minpoly.ofSubring, Algebra.adjoin_top, IsCyclotomicExtension.le_of_dvd, Subalgebra.instSMulMemClass, MvPolynomial.renameSymmetricSubalgebra_symm_apply_coe, Subalgebra.FG.sup, Algebra.adjoin_le_centralizer_centralizer, Algebra.adjoin_root_eq_top_of_isSplittingField, AlgEquiv.subalgebraMap_apply_coe, FiniteDimensional.finiteDimensional_subalgebra, AlgebraicGeometry.Scheme.Hom.ι_toNormalization_assoc, Subalgebra.LinearDisjoint.finrank_sup_of_free, Algebra.mem_adjoin_of_mem, Algebra.surjective_algebraMap_iff, AlgebraicGeometry.Scheme.Hom.fromNormalization_app_assoc, Algebra.adjoin_eq_span, Subalgebra.mem_comap, CliffordAlgebra.even_toSubmodule, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, Algebra.toSubmodule_eq_top, Localization.subalgebra.isFractionRing, Subalgebra.center_le_centralizer, FunctionField.ringOfIntegers.algebraMap_injective, ContinuousMap.subsingleton_subalgebra, AlgHom.subalgebraMap_coe_apply, DualNumber.range_inlAlgHom_sup_adjoin_eps, AddMonoidAlgebra.mem_adjoin_support, Algebra.essFiniteType_iff_exists_subalgebra, Submodule.exists_fg_of_baseChange_eq_zero, Subalgebra.fg_bot, Algebra.adjoin_univ, AlgHom.equalizer_same, Subalgebra.coe_zero, IsCyclotomicExtension.union_left, MvPolynomial.X_mem_supported, Subalgebra.pi_toSubsemiring, Algebra.adjoin_mono, MvPolynomial.esymmAlgHom_fin_injective, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, Algebra.adjoin_le_iff, polynomialFunctions_coe, CliffordAlgebra.even.lift_symm_apply_bilin, CliffordAlgebra.evenEquivEvenNeg_apply, Subalgebra.linearDisjoint_iff_injective, Subalgebra.fg_top, MvPolynomial.supported_le_supported_iff, Subalgebra.mem_toSubsemiring, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le, Algebra.adjoin_prod_le, CliffordAlgebra.toEven_ι, AlgHom.adjoin_le_equalizer, IntermediateField.mem_toSubalgebra, Subalgebra.smulCommClass_left, Subalgebra.instSubringClass, Algebra.restrictScalars_adjoin, integralClosure.coe_smul, IntermediateField.topEquiv_symm_apply_coe, Transcendental.subalgebraAlgebraicClosure, Subalgebra.lTensorBot_tmul, Subalgebra.topologicalClosure_star_comm, AlgCat.instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, Subalgebra.topEquiv_symm_apply_coe, Subalgebra.coe_comap, Subalgebra.star_mem_star_iff, Algebra.isIntegral_iSup, Subalgebra.rank_sup_le_of_free, Subalgebra.map_topologicalClosure_le, TensorProduct.toIntegralClosure_injective_of_flat, Subalgebra.isAlgebraic_iff_isAlgebraic_val, Subalgebra.rangeS_algebraMap, IntermediateField.topEquiv_apply, Algebra.isIntegral_sup, Matrix.isRepresentation.toEnd_surjective, Subalgebra.op_iSup, Subalgebra.coe_pi, IsCyclotomicExtension.singleton_one, Localization.subalgebra.isFractionRing_ofField, Subalgebra.op_sup, FunctionField.ringOfIntegers.instIsFractionRingSubtypeMemSubalgebraPolynomial, ContinuousMap.comp_attachBound_mem_closure, Algebra.adjoin_restrictScalars, mem_coeSubmodule_conductor, isCyclotomicExtension_iff, AlgEquiv.ofLeftInverse_symm_apply, Subalgebra.range_subset, Subalgebra.LinearDisjoint.val_mulMap_tmul, minpoly.equivAdjoin_toAlgHom, RingCon.quotientKerEquivRangeₐ_mkₐ, MvPolynomial.esymmAlgHom_apply, Subalgebra.mulMap_range, MvPolynomial.irreducible_toPolynomialAdjoinImageCompl, Algebra.elemental.isClosed, RingOfIntegers.exponent_eq_one_iff, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aevalEquiv_apply_coe, Subalgebra.rTensorBot_symm_apply, Algebra.comap_top, AlgHom.subalgebraMap_surjective, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, StarSubalgebra.sInf_toSubalgebra, Algebra.RingHom.adjoin_algebraMap_surjective, IsAlgebraic.exists_nonzero_eq_adjoin_mul, Subalgebra.instSubsemiringClass, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, MaximalSpectrum.iInf_localization_eq_bot, Algebra.IsCentral.center_eq_bot, Subalgebra.range_comp_val, Subalgebra.le_saturation, Subalgebra.centralizer_coe_sup, Submodule.lTensorOne_symm_apply, Subalgebra.coe_eq_zero, MvPolynomial.supported_empty, IsCyclotomicExtension.iff_adjoin_eq_top, Subalgebra.coe_starClosure, AlgebraicIndependent.option_iff, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, Algebra.mem_ideal_map_adjoin, Subalgebra.coe_unop, Subalgebra.instIsScalarTowerSubtypeMem, Algebra.adjoin_eq, JacobsonNoether.exists_separable_and_not_isCentral', IntermediateField.toSubalgebra_iSup_of_directed, IsPowMul.restriction, Submodule.lTensorOne'_one_tmul, AlgebraicIndependent.matroid_closure_eq, minpoly.coe_equivAdjoin, AlgebraicIndependent.integralClosure, Algebra.adjoin.powerBasis'_minpoly_gen, Algebra.instFiniteTypeSubtypeMemSubalgebraSubalgebra, ContinuousAlgHom.coe_rangeRestrict, Subalgebra.toIsOrderedRing, CliffordAlgebra.even.lift.aux_apply, CliffordAlgebra.even.lift.aux_ι, Algebra.eq_top_iff, Subalgebra.subsingleton_of_subsingleton, Algebra.adjoin_iUnion, Subalgebra.rank_eq_one_iff, Subalgebra.prod_top, mem_reesAlgebra_iff, FunctionField.ringOfIntegers.instIsNoetherianPolynomialSubtypeMemSubalgebraOfIsSeparableRatFunc, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, Subalgebra.map_comap_eq, Subalgebra.coe_toSubmodule, Subalgebra.FG.small, subalgebra_top_finrank_eq_submodule_top_finrank, IntermediateField.adjoin_eq_top_iff, CommRingCat.Under.equalizerFork_ι, Valuation.Integers.integralClosure, IntermediateField.toSubalgebra_lt_toSubalgebra, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, Subalgebra.opEquiv_symm_apply, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, IsLocalization.integralClosure, polynomialFunctions.topologicalClosure, Unitization.lift_range_le, RingCon.range_mkₐ, Algebra.adjoin_eq_sInf, AlgebraicIndependent.matroid_isFlat_iff, Subalgebra.natCast_mem, Subalgebra.algebraMap_mem, Algebra.map_top, Subalgebra.linearEquivOp_symm_apply_coe, Subalgebra.mem_star_iff, mem_adjoin_of_dvd_coeff_of_dvd_aeval, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, IsPrimitiveRoot.self_sub_one_pow_dvd_order, Subalgebra.coe_add, Submodule.lTensorOne_tmul, Algebra.coe_inf, Subalgebra.comm_trans_lTensorBot, AlgHom.coe_equalizer, IsPrimitiveRoot.coe_toInteger, Algebra.adjoin_eq_top_of_intermediateField, CliffordAlgebra.evenEquivEvenNeg_symm_apply, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, integralClosure.isDedekindDomain_fractionRing, Subalgebra.bot_eq_top_of_finrank_eq_one, Subalgebra.restrictScalars_toSubmodule, ContinuousMap.polynomial_comp_attachBound, IsPrimitiveRoot.adjoin_isCyclotomicExtension, StarAlgebra.adjoin_eq_span, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, MvPolynomial.supported_univ, IntermediateField.coe_type_toSubalgebra, Submodule.iSup_eq_toSubmodule_range, conductor_eq_top_iff_adjoin_eq_top, CliffordAlgebra.ofEven_ι, Subalgebra.isAlgebraic_bot_iff, AlgebraicIndependent.iff_adjoin_image, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, Subalgebra.toSubring_subtype, AdjoinRoot.adjoinRoot_eq_top, Subalgebra.isSimpleOrder_of_finrank_prime, IntermediateField.algebraicIndependent_adjoin_iff, instIsDomainSubtypeMemSubalgebraIntegralClosure, integralClosure.isIntegral, IntermediateField.rank_eq_rank_subalgebra, MvPolynomial.mem_symmetricSubalgebra, Subalgebra.instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMap, Set.integer_valuation_le_one, Subalgebra.continuousSMul, Subalgebra.setRange_algebraMap, IntermediateField.toSubalgebra_strictMono, IsIntegral.fg_adjoin_singleton, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, IsScalarTower.subalgebra', Algebra.cardinalMk_adjoin_le, Subalgebra.algebraMap_apply, Subalgebra.smul_def, Complex.adjoin_I, integralClosure.isIntegralClosure, MvPolynomial.esymmAlgHom_fin_bijective, IsCyclotomicExtension.adjoin_roots, instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing, MvPolynomial.esymmAlgEquiv_apply, IsFractionRing.liftAlgHom_fieldRange, Algebra.FiniteType.out, polynomialFunctions_closure_eq_top', Subalgebra.val_mulMap'_tmul, Subalgebra.mem_pi, IntermediateField.sup_toSubalgebra_of_right, IntermediateField.algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, MvPolynomial.range_mapAlgHom, Subalgebra.pointwise_smul_toSubsemiring, IntermediateField.equivOfEq_apply, ContinuousMap.polynomial_comp_attachBound_mem, IntermediateField.le_sup_toSubalgebra, Subalgebra.isAlgebraic_iff, IntermediateField.isAlgebraic_adjoin_iff_bot, Algebra.adjoin_union_eq_adjoin_adjoin, Localization.localRingHom_bijective_of_not_conductor_le, IsTranscendenceBasis.isAlgebraic, StarSubalgebra.coe_toSubalgebra, AlgHom.isNoetherianRing_range, Polynomial.aeval_mem_adjoin_singleton, IntermediateField.transcendental_adjoin_iff, Subalgebra.mem_prod, FiniteDimensional.subalgebra_toSubmodule, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, Subalgebra.mem_perfectClosure_iff, Algebra.adjoin.powerBasis'_gen, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, Subalgebra.range_le, AlgHom.mem_equalizer, Subalgebra.isDomain, Subalgebra.LinearDisjoint.isDomain, ContinuousAlgHom.instCompleteSpaceSubtypeMemSubalgebraEqualizerOfT2SpaceOfContinuousMapClass, IntermediateField.sup_toSubalgebra_of_isAlgebraic_right, Subalgebra.mem_toSubring, IntermediateField.toSubalgebra_le_toSubalgebra, isNoetherianRing_of_fg, IsAlgClosed.isAlgClosure_of_transcendence_basis, Submodule.lTensorOne_one_tmul, Submodule.mem_toSubalgebra, IsCyclotomicExtension.union_right, Subalgebra.toSubsemiring_subtype, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, IsIntegral.inv_mem_adjoin, Algebra.map_iInf, Subalgebra.equivOfEq_symm, Algebra.essFiniteType_iff, Subalgebra.coe_centralizer, Algebra.EssFiniteType.cond, ContinuousMap.exists_mem_subalgebra_near_continuous_of_separatesPoints, Subalgebra.isIntegral_iff, Algebra.TensorProduct.adjoin_tmul_eq_top, Subalgebra.pointwise_smul_toSubmodule, IntermediateField.iInf_toSubalgebra, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton, Subalgebra.mulMap_tmul, AlgEquiv.subalgebraMap_symm_apply_coe, Subalgebra.coe_toSubring, Algebra.mem_inf, Subalgebra.one_mem, Subalgebra.coe_pow, Subalgebra.finrank_bot, MvPolynomial.supportedEquivMvPolynomial_symm_C, Subalgebra.prod_toSubmodule, Subalgebra.le_op_iff, Algebra.coe_sInf, Algebra.sup_def, Subalgebra.restrictScalars_top, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_right, Algebra.IsCentral.out, polynomialFunctions_closure_eq_top, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, IsDedekindDomain.integer_univ, CliffordAlgebra.evenToNeg_comp_evenToNeg, MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le, Algebra.exists_notMem_and_isIntegral_forall_mem_of_ne_of_liesOver, IsAdjoinRoot.adjoin_root_eq_top, Subalgebra.mopAlgEquivOp_apply_coe, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure, MvPolynomial.transcendental_supported_X, Subalgebra.coe_mk, IsLocalization.Away.integralClosure, Subalgebra.star_mono, Subalgebra.isClosed_topologicalClosure, Subalgebra.LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, Subalgebra.algEquivOpMop_symm_apply_coe, CyclotomicRing.eq_adjoin_primitive_root, Subalgebra.bot_eq_top_iff_rank_eq_one, AlgHom.equalizer_toSubmodule, Subalgebra.rTensorBot_tmul, Subalgebra.LinearDisjoint.rank_eq_one_of_flat_of_self_of_inj, Subalgebra.pi_toSubmodule, Algebra.range_id, Polynomial.SplittingField.adjoin_rootSet, Subalgebra.range_algebraMap, AlgebraicIndependent.iff_transcendental_adjoin_image, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, Algebra.inf_toSubsemiring, StarSubalgebra.iInf_toSubalgebra, Module.End.exists_isNilpotent_isSemisimple, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, StarSubalgebra.top_toSubalgebra, integralClosure.mem_lifts_of_monic_of_dvd_map, IsCyclotomicExtension.lcm_sup, Subalgebra.LinearDisjoint.eq_bot_of_self, Subalgebra.pointwise_smul_toSubring, Subalgebra.op_le_op_iff, Subalgebra.LinearDisjoint.bot_left, Subalgebra.topologicalClosure_adjoin_le_centralizer_centralizer, Subalgebra.rank_bot, Subalgebra.coe_valA', Subalgebra.LinearDisjoint.bot_right, MvPolynomial.supported_eq_vars_subset, AlgebraicGeometry.Scheme.Hom.fromNormalization_app, notMem_iff_exists_ne_and_isConjRoot, Algebra.gc, Subalgebra.rank_toSubmodule, Transcendental.integralClosure, Algebra.adjoin_empty, Subalgebra.fg_bot_toSubmodule, Algebra.botEquiv_symm_apply, RingCon.coe_quotientKerEquivRangeₐ_mkₐ, Ideal.Filtration.submodule_fg_iff_stable, Module.End.mem_subalgebraCenter_iff, Subalgebra.rank_top, Subalgebra.bot_eq_top_of_rank_eq_one, Algebra.TensorProduct.linearEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_fg, Subalgebra.opEquiv_apply, Subalgebra.finrank_eq_one_iff, MvPolynomial.esymmAlgHom_surjective, CommRingCat.Under.equalizer_comp, IntermediateField.algebra_adjoin_le_adjoin, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, subalgebra_top_rank_eq_submodule_top_rank, MvPolynomial.esymmAlgEquiv_symm_apply, Subalgebra.equivOfEq_trans, TrivSqZeroExt.range_liftAux, Localization.mem_range_mapToFractionRing_iff, CommRingCat.Under.equalizerFork'_ι, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, FunctionField.ringOfIntegers.not_isField, CliffordAlgebra.even.lift.aux_one, Subalgebra.eq_bot_of_isPurelyInseparable_of_isSeparable, Subalgebra.finite_bot, MvPolynomial.esymmAlgHom_injective, Algebra.Subalgebra.restrictScalars_adjoin, Algebra.self_mem_adjoin_singleton, Subalgebra.ext_iff, Subalgebra.coe_prod, Algebra.rank_adjoin_le, MvPolynomial.renameSymmetricSubalgebra_apply_coe, CliffordAlgebra.even.lift.aux_algebraMap, Subalgebra.unop_iSup, Subalgebra.unop_sInf, MvPolynomial.transcendental_supported_polynomial_aeval_X, Localization.subalgebra.instIsFractionRingSubtypeMemSubalgebra, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective, Subalgebra.mem_centralizer_iff

---

← Back to Index