Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Flat/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsincludeLeft_injective, includeRight_injective, nontrivial_of_algebraMap_injective_of_flat_left, nontrivial_of_algebraMap_injective_of_flat_right, tensorProduct_of_flat_of_forall_fg, of_flat, of_flat_of_isBaseChange, map_id_injective_of_flat_left, map_id_injective_of_flat_right, map_injective_of_flat_left_right, map_injective_of_flat_right_left, tmul_of_flat_left, tmul_of_flat_right, rTensor_injective_iff_subtype, rTensor_injective_of_fg, dfinsupp, dfinsupp_iff, directSum, directSum_iff, equiv_iff, finsupp, iff_lTensor_exact, iff_lTensor_exact', iff_lTensor_injectiveβ‚›, iff_lTensor_preserves_injective_linearMap, iff_lTensor_preserves_injective_linearMap', iff_lTensor_preserves_injective_linearMapβ‚›, iff_rTensor_exact, iff_rTensor_exact', iff_rTensor_injectiveβ‚›, iff_rTensor_preserves_injective_linearMap, iff_rTensor_preserves_injective_linearMap', iff_rTensor_preserves_injective_linearMapβ‚›, instSubalgebraToSubmodule, instTensorProduct, lTensor_exact, lTensor_preserves_injective_linearMap, linearIndependent_one_tmul, of_free, of_linearEquiv, of_projective, of_retract, of_shrink, of_ulift, out, rTensor_exact, rTensor_preserves_injective_linearMap, self, shrink, tensorProduct_mapIncl_injective_of_left, tensorProduct_mapIncl_injective_of_right, ulift, flat_iff, tmul_of_flat_left, tmul_of_flat_right, map_injective_of_flat_flat, map_injective_of_flat_flat', nontrivial_of_linearMap_injective_of_flat_left, nontrivial_of_linearMap_injective_of_flat_right
59
Total59

Algebra.TensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
includeLeft_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
AlgHom
instSemiring
leftAlgebra
AlgHom.funLike
includeLeft
β€”RingHomInvPair.ids
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Module.Flat.lTensor_preserves_injective_linearMap
LinearEquiv.injective
includeRight_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
AlgHom
instSemiring
instAlgebra
AlgHom.funLike
includeRight
β€”RingHomInvPair.ids
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Module.Flat.rTensor_preserves_injective_linearMap
LinearEquiv.injective
nontrivial_of_algebraMap_injective_of_flat_left πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Nontrivial
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
β€”TensorProduct.nontrivial_of_linearMap_injective_of_flat_left
nontrivial_of_algebraMap_injective_of_flat_right πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Nontrivial
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
β€”TensorProduct.nontrivial_of_linearMap_injective_of_flat_right

IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
tensorProduct_of_flat_of_forall_fg πŸ“–β€”IsReduced
TensorProduct
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Subalgebra.toSemiring
Algebra.toModule
Subalgebra.instModuleSubtypeMem
TensorProduct.zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
Subalgebra.algebra
β€”β€”exists_isNilpotent_of_not_isReduced
Algebra.to_smulCommClass
exists_fg_and_mem_baseChange
IsScalarTower.to_smulCommClass
IsScalarTower.right
Module.Flat.lTensor_preserves_injective_linearMap
Subtype.val_injective
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass

IsSMulRegular

Theorems

NameKindAssumesProvesValidatesDepends On
of_flat πŸ“–mathematicalIsSMulRegular
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”of_flat_of_isBaseChange
IsScalarTower.right
IsBaseChange.linearMap
of_flat_of_isBaseChange πŸ“–mathematicalIsBaseChange
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”smulCommClass_self
IsTensorProduct.map_id_injective_of_flat_left
LinearMap.IsScalarTower.compatibleSMul
IsBaseChange.map_id_lsmul_eq_lsmul_algebraMap

IsTensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
map_id_injective_of_flat_left πŸ“–mathematicalIsTensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
map
LinearMap.id
β€”smulCommClass_self
RingHomInvPair.ids
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_eq
equiv_symm_apply
map_add
SemilinearMapClass.toAddHomClass
EquivLike.toEmbeddingLike
Module.Flat.lTensor_preserves_injective_linearMap
map_id_injective_of_flat_right πŸ“–mathematicalIsTensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
map
LinearMap.id
β€”smulCommClass_self
RingHomInvPair.ids
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_eq
equiv_symm_apply
map_add
SemilinearMapClass.toAddHomClass
EquivLike.toEmbeddingLike
Module.Flat.rTensor_preserves_injective_linearMap
map_injective_of_flat_left_right πŸ“–mathematicalIsTensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
mapβ€”smulCommClass_self
RingHomInvPair.ids
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_eq
equiv_symm_apply
map_add
SemilinearMapClass.toAddHomClass
EquivLike.toEmbeddingLike
TensorProduct.map_injective_of_flat_flat'
map_injective_of_flat_right_left πŸ“–mathematicalIsTensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
mapβ€”smulCommClass_self
RingHomInvPair.ids
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_eq
equiv_symm_apply
map_add
SemilinearMapClass.toAddHomClass
EquivLike.toEmbeddingLike
TensorProduct.map_injective_of_flat_flat

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
tmul_of_flat_left πŸ“–mathematicalLinearIndependent
CommSemiring.toSemiring
TensorProduct
TensorProduct.tmul
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”eq_1
RingHomInvPair.ids
LinearEquiv.coe_toLinearMap
RingHomCompTriple.ids
LinearMap.coe_comp
Finsupp.lhom_ext'
LinearMap.ext_ring
Finsupp.linearCombination_single
one_smul
finsuppTensorFinsupp'_symm_single_eq_single_one_tmul
TensorProduct.map_injective_of_flat_flat
Module.Flat.finsupp
LinearEquiv.injective
tmul_of_flat_right πŸ“–mathematicalLinearIndependent
CommSemiring.toSemiring
TensorProduct
TensorProduct.tmul
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”comp
RingHomInvPair.ids
LinearMap.linearIndependent_iff_of_injOn
Function.Injective.injOn
LinearEquiv.injective
tmul_of_flat_left
Function.Bijective.injective
Prod.swap_bijective

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
rTensor_injective_iff_subtype πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
rTensor
Submodule
SetLike.instMembership
Submodule.setLike
range
RingHomSurjective.ids
comp
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
Submodule.addCommMonoid
Submodule.module
Submodule.subtype
β€”RingHomInvPair.ids
RingHomSurjective.ids
RingHomCompTriple.ids
RingHomSurjective.invPair
LinearEquiv.injective
EquivLike.injective_comp
EquivLike.comp_injective
rTensor_injective_of_fg πŸ“–β€”TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
rTensor
restrict
β€”β€”RingHomSurjective.ids
Submodule.exists_fg_le_subset_range_rTensor_subtype
Submodule.FG.exists_rTensor_fg_inclusion_eq
Submodule.FG.map
RingHomCompTriple.ids
rTensor_comp_apply
Submodule.map_le_iff_le_comap

Module

Theorems

NameKindAssumesProvesValidatesDepends On
flat_iff πŸ“–mathematicalβ€”Flat
TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
Submodule.subtype
β€”β€”

Module.Flat

Theorems

NameKindAssumesProvesValidatesDepends On
dfinsupp πŸ“–mathematicalModule.FlatDFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.addCommMonoid
DFinsupp.module
CommSemiring.toSemiring
β€”dfinsupp_iff
dfinsupp_iff πŸ“–mathematicalβ€”Module.Flat
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.addCommMonoid
DFinsupp.module
CommSemiring.toSemiring
β€”directSum_iff
directSum πŸ“–mathematicalModule.FlatDirectSum
instAddCommMonoidDirectSum
DirectSum.instModule
CommSemiring.toSemiring
β€”directSum_iff
directSum_iff πŸ“–mathematicalβ€”Module.Flat
DirectSum
instAddCommMonoidDirectSum
DirectSum.instModule
CommSemiring.toSemiring
β€”RingHomInvPair.ids
EquivLike.comp_injective
RingHomCompTriple.ids
TensorProduct.directSumRight_comp_rTensor
equiv_iff πŸ“–mathematicalβ€”Module.Flatβ€”RingHomInvPair.ids
of_linearEquiv
finsupp πŸ“–mathematicalβ€”Module.Flat
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
β€”of_linearEquiv
directSum
self
iff_lTensor_exact πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Function.Exact
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
TensorProduct.zero
β€”iff_lTensor_exact'
UnivLE.small
univLE_of_max
UnivLE.self
iff_lTensor_exact' πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Function.Exact
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
TensorProduct.zero
β€”lTensor_exact
iff_lTensor_preserves_injective_linearMap'
LinearMap.ker_eq_bot
eq_bot_iff
LinearMap.lTensor_zero
LinearMap.map_eq_zero_iff
iff_lTensor_injectiveβ‚› πŸ“–mathematicalβ€”Module.Flat
TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
Submodule.subtype
β€”β€”
iff_lTensor_preserves_injective_linearMap πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”iff_lTensor_preserves_injective_linearMap'
UnivLE.small
univLE_of_max
UnivLE.self
iff_lTensor_preserves_injective_linearMap' πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”β€”
iff_lTensor_preserves_injective_linearMapβ‚› πŸ“–mathematicalβ€”Module.Flat
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”β€”
iff_rTensor_exact πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Function.Exact
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
TensorProduct.zero
β€”iff_rTensor_exact'
UnivLE.small
univLE_of_max
UnivLE.self
iff_rTensor_exact' πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Function.Exact
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
TensorProduct.zero
β€”rTensor_exact
iff_rTensor_preserves_injective_linearMap'
LinearMap.ker_eq_bot
eq_bot_iff
LinearMap.rTensor_zero
LinearMap.map_eq_zero_iff
iff_rTensor_injectiveβ‚› πŸ“–mathematicalβ€”Module.Flat
TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
Submodule.subtype
β€”rTensor_preserves_injective_linearMap
Subtype.val_injective
iff_rTensor_preserves_injective_linearMap πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
β€”iff_rTensor_preserves_injective_linearMap'
UnivLE.small
univLE_of_max
UnivLE.self
iff_rTensor_preserves_injective_linearMap' πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
β€”rTensor_preserves_injective_linearMap
iff_rTensor_preserves_injective_linearMapβ‚›
iff_rTensor_preserves_injective_linearMapβ‚› πŸ“–mathematicalβ€”Module.Flat
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
β€”rTensor_preserves_injective_linearMap
Module.Finite.small
RingHomSurjective.ids
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.rTensor_injective_iff_subtype
Subtype.val_injective
instSubalgebraToSubmodule πŸ“–mathematicalβ€”Module.Flat
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderEmbedding
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Submodule.addCommMonoid
Submodule.module
β€”β€”
instTensorProduct πŸ“–mathematicalβ€”Module.Flat
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.leftModule
CommSemiring.toSemiring
IsScalarTower.to_smulCommClass
β€”IsScalarTower.to_smulCommClass
iff_rTensor_injectiveβ‚›
RestrictScalars.isScalarTower
IsScalarTower.to_smulCommClass'
Submodule.isScalarTower'
IsScalarTower.left
TensorProduct.isScalarTower
RingHomInvPair.ids
smulCommClass_self
TensorProduct.smulCommClass_left
RingHomCompTriple.ids
TensorProduct.AlgebraTensorModule.rTensor_tensor
EquivLike.toEmbeddingLike
rTensor_preserves_injective_linearMap
LinearMap.IsScalarTower.compatibleSMul
Submodule.injective_subtype
lTensor_exact πŸ“–mathematicalFunction.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.lTensor
TensorProduct.zero
β€”RingHomSurjective.ids
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.exact_iff
lTensor_exact
Quotient.mk''_surjective
LinearMap.lTensor_comp
Function.Exact.comp_injective
lTensor_preserves_injective_linearMap
Subtype.val_injective
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
lTensor_preserves_injective_linearMap πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.lTensor
β€”rTensor_preserves_injective_linearMap
linearIndependent_one_tmul πŸ“–mathematicalLinearIndependent
CommSemiring.toSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
LinearIndependent.eq_1
LinearMap.CompatibleSMul.finsupp_dom
LinearMap.IsScalarTower.compatibleSMul'
TensorProduct.isScalarTower_left
IsScalarTower.right
LinearMap.coe_restrictScalars
RingHomCompTriple.ids
RingHomInvPair.ids
IsScalarTower.to_smulCommClass
IsScalarTower.left
Finsupp.linearCombination_one_tmul
lTensor_preserves_injective_linearMap
of_free πŸ“–mathematicalβ€”Module.Flatβ€”of_projective
Module.Projective.of_free
of_linearEquiv πŸ“–mathematicalβ€”Module.Flatβ€”RingHomInvPair.ids
of_retract
RingHomCompTriple.ids
LinearEquiv.self_trans_symm
of_projective πŸ“–mathematicalβ€”Module.Flatβ€”RingHomCompTriple.ids
Module.projective_def'
of_retract
finsupp
of_retract πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.id
Module.Flatβ€”RingHomCompTriple.ids
iff_rTensor_injectiveβ‚›
Function.Injective.of_comp
LinearMap.coe_comp
LinearMap.lTensor_comp_rTensor
LinearMap.rTensor_comp_lTensor
Function.RightInverse.injective
LinearMap.lTensor_id
of_shrink πŸ“–mathematicalβ€”Module.Flatβ€”of_linearEquiv
RingHomInvPair.ids
of_ulift πŸ“–mathematicalβ€”Module.Flatβ€”of_linearEquiv
RingHomInvPair.ids
out πŸ“–mathematicalSubmodule.FG
CommSemiring.toSemiring
TensorProduct
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
Submodule.subtype
β€”β€”
rTensor_exact πŸ“–mathematicalFunction.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.rTensor
TensorProduct.zero
β€”RingHomSurjective.ids
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.exact_iff
rTensor_exact
Quotient.mk''_surjective
LinearMap.rTensor_comp
Function.Exact.comp_injective
rTensor_preserves_injective_linearMap
Subtype.val_injective
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
rTensor_preserves_injective_linearMap πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.rTensor
β€”LinearMap.rTensor_injective_of_fg
Module.Finite.small
UnivLE.small
univLE_of_max
UnivLE.self
Module.Finite.iff_fg
RingHomInvPair.ids
Module.Finite.equiv
RingHomSurjective.ids
RingHomCompTriple.ids
LinearMap.rTensor_injective_iff_subtype
Module.flat_iff
Module.Finite.range
self πŸ“–mathematicalβ€”Module.Flat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
β€”RingHomInvPair.ids
Equiv.injective_comp
Equiv.comp_injective
one_smul
Subtype.coe_injective
shrink πŸ“–mathematicalβ€”Module.Flat
Shrink
Shrink.instAddCommMonoid
Shrink.instModule
CommSemiring.toSemiring
β€”of_linearEquiv
tensorProduct_mapIncl_injective_of_left πŸ“–mathematicalβ€”TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.mapIncl
β€”TensorProduct.map_injective_of_flat_flat'
Submodule.subtype_injective
tensorProduct_mapIncl_injective_of_right πŸ“–mathematicalβ€”TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.mapIncl
β€”TensorProduct.map_injective_of_flat_flat
Submodule.subtype_injective
ulift πŸ“–mathematicalβ€”Module.Flat
ULift.addCommMonoid
ULift.module'
CommSemiring.toSemiring
β€”of_linearEquiv

TensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
map_injective_of_flat_flat πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
TensorProduct
addCommMonoid
instModule
map
β€”RingHomCompTriple.ids
LinearMap.lTensor_comp_rTensor
Module.Flat.lTensor_preserves_injective_linearMap
Module.Flat.rTensor_preserves_injective_linearMap
map_injective_of_flat_flat' πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
TensorProduct
addCommMonoid
instModule
map
β€”RingHomCompTriple.ids
LinearMap.rTensor_comp_lTensor
Module.Flat.rTensor_preserves_injective_linearMap
Module.Flat.lTensor_preserves_injective_linearMap
nontrivial_of_linearMap_injective_of_flat_left πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
Nontrivial
TensorProduct
β€”Function.Injective.nontrivial
RingHomInvPair.ids
Module.Flat.lTensor_preserves_injective_linearMap
LinearEquiv.injective
nontrivial_of_linearMap_injective_of_flat_right πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
Nontrivial
TensorProduct
β€”Function.Injective.nontrivial
RingHomInvPair.ids
Module.Flat.rTensor_preserves_injective_linearMap
LinearEquiv.injective

TensorProduct.LinearIndepOn

Theorems

NameKindAssumesProvesValidatesDepends On
tmul_of_flat_left πŸ“–mathematicalLinearIndepOn
CommSemiring.toSemiring
TensorProduct
TensorProduct.tmul
TensorProduct.addCommMonoid
TensorProduct.instModule
SProd.sprod
Set
Set.instSProd
β€”LinearIndependent.comp
LinearIndependent.tmul_of_flat_left
Equiv.injective
tmul_of_flat_right πŸ“–mathematicalLinearIndepOn
CommSemiring.toSemiring
TensorProduct
TensorProduct.tmul
TensorProduct.addCommMonoid
TensorProduct.instModule
SProd.sprod
Set
Set.instSProd
β€”LinearIndependent.comp
LinearIndependent.tmul_of_flat_right
Equiv.injective

---

← Back to Index