Documentation Verification Report

Algebra

📁 Source: Mathlib/RingTheory/Flat/FaithfullyFlat/Algebra.lean

Statistics

MetricCount
Definitions0
Theoremscomap_map_eq_self_of_faithfullyFlat, comap_surjective_of_faithfullyFlat, exists_isPrime_liesOver_of_faithfullyFlat, faithfulSMul, of_comap_surjective, of_flat_of_isLocalHom, of_specComap_surjective, tensorProduct_mk_injective, comap_surjective_of_faithfullyFlat, specComap_surjective_of_faithfullyFlat
10
Total10

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
comap_map_eq_self_of_faithfullyFlat 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
map
le_antisymm
RingHom.instRingHomClass
IsScalarTower.right
RingHomCompTriple.ids
Algebra.to_smulCommClass
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
Quotient.isScalarTower
TensorProduct.smulCommClass_left
smulCommClass_self
LinearMap.coe_comp
AlgEquiv.injective
Module.FaithfullyFlat.tensorProduct_mk_injective
instIsTwoSided_1
Quotient.eq_zero_iff_mem
mem_comap
TensorProduct.tmul_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
le_comap_map
comap_surjective_of_faithfullyFlat 📖mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
RingHom.instRingHomClass
comap_map_eq_self_of_faithfullyFlat
exists_isPrime_liesOver_of_faithfullyFlat 📖mathematicalIsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
LiesOver
RingHom.instRingHomClass
comap_map_eq_self_iff_of_isPrime
comap_map_eq_self_of_faithfullyFlat

Module.FaithfullyFlat

Theorems

NameKindAssumesProvesValidatesDepends On
faithfulSMul 📖mathematicalFaithfulSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
tensorProduct_mk_injective
TensorProduct.smulCommClass_left
smulCommClass_self
mul_one
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
IsScalarTower.right
of_comap_surjective 📖mathematicalPrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Module.FaithfullyFlat
Ring.toAddCommGroup
CommRing.toRing
Algebra.toModule
Ideal.IsMaximal.isPrime
IsScalarTower.left
RingHom.instRingHomClass
PrimeSpectrum.comap_asIdeal
IsScalarTower.right
Ideal.smul_top_eq_map
Iff.ne
Submodule.restrictScalars_eq_top_iff
Ideal.IsPrime.ne_top
PrimeSpectrum.isPrime
top_le_iff
Ideal.map_comap_le
of_flat_of_isLocalHom 📖mathematicalModule.FaithfullyFlat
Ring.toAddCommGroup
CommRing.toRing
Algebra.toModule
CommRing.toCommSemiring
CommSemiring.toSemiring
IsScalarTower.left
IsScalarTower.right
Ideal.smul_top_eq_map
IsLocalRing.eq_maximalIdeal
List.TFAE.out
RingHom.instRingHomClass
IsLocalRing.local_hom_TFAE
Ideal.IsPrime.ne_top'
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
Submodule.restrictScalars_eq_top_iff
top_le_iff
of_specComap_surjective 📖mathematicalPrimeSpectrum
CommRing.toCommSemiring
PrimeSpectrum.comap
algebraMap
CommSemiring.toSemiring
Module.FaithfullyFlat
Ring.toAddCommGroup
CommRing.toRing
Algebra.toModule
of_comap_surjective
tensorProduct_mk_injective 📖mathematicalTensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
Algebra.toModule
CommSemiring.toSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
TensorProduct.smulCommClass_left
smulCommClass_self
lTensor_injective_iff_injective
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.ext'
LinearMap.coe_comp
LinearEquiv.coe_coe
EmbeddingLike.comp_injective
EquivLike.toEmbeddingLike
Algebra.TensorProduct.mk_one_injective_of_isScalarTower
Algebra.to_smulCommClass
TensorProduct.isScalarTower_left
IsScalarTower.right

PrimeSpectrum

Theorems

NameKindAssumesProvesValidatesDepends On
comap_surjective_of_faithfullyFlat 📖mathematicalPrimeSpectrum
CommRing.toCommSemiring
comap
algebraMap
CommSemiring.toSemiring
RingHom.instRingHomClass
mem_range_comap_iff
Ideal.comap_map_eq_self_of_faithfullyFlat
specComap_surjective_of_faithfullyFlat 📖mathematicalPrimeSpectrum
CommRing.toCommSemiring
comap
algebraMap
CommSemiring.toSemiring
comap_surjective_of_faithfullyFlat

---

← Back to Index