Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Flat/FaithfullyFlat/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsmap_smul_top_ne_top_iff_of_faithfullyFlat, directSum, finsupp, iff_exact_iff_lTensor_exact, iff_exact_iff_rTensor_exact, iff_flat_and_ideal_smul_eq_top, iff_flat_and_lTensor_faithful, iff_flat_and_lTensor_reflects_triviality, iff_flat_and_proper_ideal, iff_flat_and_rTensor_faithful, iff_flat_and_rTensor_reflects_triviality, iff_zero_iff_lTensor_zero, iff_zero_iff_rTensor_zero, instOfNontrivialOfFree, instTensorProduct, lTensor_bijective_iff_bijective, lTensor_exact_iff_exact, lTensor_injective_iff_injective, lTensor_nontrivial, lTensor_reflects_exact, lTensor_reflects_triviality, lTensor_surjective_iff_surjective, nontrivial_tensorProduct_iff_left, nontrivial_tensorProduct_iff_right, of_linearEquiv, one_tmul_eq_zero_iff, rTensor_exact_iff_exact, rTensor_nontrivial, rTensor_reflects_exact, rTensor_reflects_triviality, range_le_ker_of_exact_rTensor, self, submodule_ne_top, subsingleton_tensorProduct_iff_left, subsingleton_tensorProduct_iff_right, toFlat, trans, zero_iff_lTensor_zero, zero_iff_rTensor_zero, iff_flat_tensorProduct, of_flat_tensorProduct, faithfullyFlat_iff
42
Total42

IsBaseChange

Theorems

NameKindAssumesProvesValidatesDepends On
map_smul_top_ne_top_iff_of_faithfullyFlat πŸ“–β€”IsBaseChange
AddCommGroup.toAddCommMonoid
CommRing.toCommSemiring
β€”β€”IsScalarTower.left
Iff.not
Submodule.Quotient.subsingleton_iff
Equiv.subsingleton_congr
RingHomInvPair.ids
Algebra.to_smulCommClass
RingHomCompTriple.ids
IsScalarTower.to_smulCommClass
Ideal.Quotient.isScalarTower
IsScalarTower.right
TensorProduct.isScalarTower_left
Module.FaithfullyFlat.subsingleton_tensorProduct_iff_right

Module

Theorems

NameKindAssumesProvesValidatesDepends On
faithfullyFlat_iff πŸ“–mathematicalβ€”FaithfullyFlat
Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”IsScalarTower.left

Module.FaithfullyFlat

Theorems

NameKindAssumesProvesValidatesDepends On
directSum πŸ“–mathematicalModule.FaithfullyFlatDirectSum
AddCommGroup.toAddCommMonoid
DirectSum.instAddCommGroup
DirectSum.instModule
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”iff_flat_and_lTensor_faithful
Module.Flat.directSum
toFlat
Nontrivial.exists_pair_ne
lTensor_nontrivial
Equiv.nontrivial
DirectSum.instSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.left
RingHomInvPair.ids
DirectSum.of_injective
finsupp πŸ“–mathematicalβ€”Module.FaithfullyFlat
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
CommRing.toRing
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
β€”of_linearEquiv
directSum
self
iff_exact_iff_lTensor_exact πŸ“–mathematicalβ€”Module.FaithfullyFlat
Function.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.lTensor
TensorProduct.zero
β€”β€”
iff_exact_iff_rTensor_exact πŸ“–mathematicalβ€”Module.FaithfullyFlat
Function.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.rTensor
TensorProduct.zero
β€”rTensor_exact_iff_exact
iff_flat_and_rTensor_reflects_triviality
Module.Flat.iff_rTensor_exact
LinearMap.rTensor_zero
iff_flat_and_ideal_smul_eq_top πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Top.top
Ideal
CommSemiring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsScalarTower.left
iff_flat_and_proper_ideal
iff_flat_and_lTensor_faithful πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Nontrivial
TensorProduct
β€”iff_flat_and_rTensor_faithful
Equiv.nontrivial
RingHomInvPair.ids
iff_flat_and_lTensor_reflects_triviality πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”iff_flat_and_lTensor_faithful
iff_flat_and_proper_ideal πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”IsScalarTower.left
Module.faithfullyFlat_iff
Ideal.exists_le_maximal
eq_top_iff
Submodule.smul_mono
Ideal.IsMaximal.ne_top
iff_flat_and_rTensor_faithful πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Nontrivial
TensorProduct
β€”toFlat
rTensor_nontrivial
IsScalarTower.left
Equiv.nontrivial
RingHomInvPair.ids
ULift.nontrivial
IsDomain.toNontrivial
Ideal.instIsTwoSided_1
Ideal.Quotient.isDomain
Ideal.IsMaximal.isPrime'
not_subsingleton
Submodule.Quotient.subsingleton_iff
iff_flat_and_rTensor_reflects_triviality πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”iff_flat_and_rTensor_faithful
iff_zero_iff_lTensor_zero πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.lTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instZero
β€”toFlat
zero_iff_lTensor_zero
iff_flat_and_lTensor_reflects_triviality
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
iff_zero_iff_rTensor_zero πŸ“–mathematicalβ€”Module.FaithfullyFlat
Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.rTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instZero
β€”toFlat
zero_iff_rTensor_zero
iff_flat_and_rTensor_reflects_triviality
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
instOfNontrivialOfFree πŸ“–mathematicalβ€”Module.FaithfullyFlatβ€”of_linearEquiv
finsupp
Module.Free.instNonemptyChooseBasisIndexOfNontrivial
instTensorProduct πŸ“–mathematicalβ€”Module.FaithfullyFlat
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
Algebra.toModule
CommSemiring.toSemiring
TensorProduct.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
iff_flat_and_rTensor_reflects_triviality
Module.Flat.baseChange
toFlat
IsScalarTower.of_algebraMap_smul
Equiv.subsingleton
RingHomInvPair.ids
IsScalarTower.to_smulCommClass
smulCommClass_self
IsScalarTower.left
rTensor_reflects_triviality
lTensor_bijective_iff_bijective πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”β€”
lTensor_exact_iff_exact πŸ“–mathematicalβ€”Function.Exact
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
TensorProduct.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”lTensor_reflects_exact
Module.Flat.lTensor_exact
toFlat
lTensor_injective_iff_injective πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”LinearMap.exact_zero_iff_injective
lTensor_exact_iff_exact
LinearMap.lTensor_zero
lTensor_nontrivial πŸ“–mathematicalβ€”Nontrivial
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Equiv.nontrivial
RingHomInvPair.ids
rTensor_nontrivial
lTensor_reflects_exact πŸ“–mathematicalFunction.Exact
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
TensorProduct.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”rTensor_reflects_exact
Function.Exact.of_ladder_linearEquiv_of_exact
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.ext
IsScalarTower.to_smulCommClass
lTensor_reflects_triviality πŸ“–β€”β€”β€”β€”rTensor_reflects_triviality
Function.Injective.subsingleton
RingHomInvPair.ids
Equiv.injective
lTensor_surjective_iff_surjective πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”LinearMap.exact_zero_iff_surjective
lTensor_exact_iff_exact
LinearMap.lTensor_zero
nontrivial_tensorProduct_iff_left πŸ“–mathematicalβ€”Nontrivial
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
subsingleton_tensorProduct_iff_left
nontrivial_tensorProduct_iff_right πŸ“–mathematicalβ€”Nontrivial
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
subsingleton_tensorProduct_iff_right
of_linearEquiv πŸ“–mathematicalβ€”Module.FaithfullyFlatβ€”RingHomInvPair.ids
iff_flat_and_lTensor_faithful
Module.Flat.of_linearEquiv
toFlat
Equiv.nontrivial
lTensor_nontrivial
one_tmul_eq_zero_iff πŸ“–mathematicalβ€”TensorProduct.tmul
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddCommGroup.toAddCommMonoid
Algebra.toModule
Ring.toSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
TensorProduct
TensorProduct.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”SMulCommClass.symm
smulCommClass_self
zero_iff_lTensor_zero
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
LinearMap.ext_ring
one_smul
mul_one
smul_eq_mul
Algebra.to_smulCommClass
TensorProduct.smul_tmul'
smul_zero
DFunLike.congr_fun
TensorProduct.tmul_zero
rTensor_exact_iff_exact πŸ“–mathematicalβ€”Function.Exact
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
TensorProduct.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”rTensor_reflects_exact
Module.Flat.rTensor_exact
toFlat
rTensor_nontrivial πŸ“–mathematicalβ€”Nontrivial
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”nontrivial_iff_exists_ne
one_smul
Submodule.mem_annihilator_span_singleton
Ideal.eq_top_iff_one
SMulCommClass.symm
smulCommClass_self
LinearMap.ker_eq_bot
eq_bot_iff
Quotient.inductionOn'
IsScalarTower.left
iff_flat_and_proper_ideal
subsingleton_or_nontrivial
Submodule.Quotient.subsingleton_iff
Function.Injective.subsingleton
RingHomInvPair.ids
Module.Flat.rTensor_preserves_injective_linearMap
toFlat
LinearEquiv.injective
rTensor_reflects_exact πŸ“–mathematicalFunction.Exact
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
TensorProduct.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomSurjective.ids
LinearMap.exact_iff
range_le_ker_of_exact_rTensor
RingHomInvPair.ids
Equiv.subsingleton_congr
Submodule.Quotient.subsingleton_iff
LinearMap.range_eq_top
TensorProduct.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
TensorProduct.zero_tmul
RingHomCompTriple.ids
Module.Flat.rTensor_preserves_injective_linearMap
toFlat
Subtype.val_injective
LinearMap.mem_range_self
LinearMap.comp_codRestrict
LinearMap.comp_apply
LinearMap.rTensor_def
LinearMap.rTensor_comp
LinearMap.comp_assoc
RingHomCompTriple.right_ids
LinearMap.subtype_comp_codRestrict
Submodule.subtype_comp_inclusion
map_add
SemilinearMapClass.toAddHomClass
rTensor_reflects_triviality
le_antisymm
Submodule.comap_subtype_eq_top
Submodule.range_inclusion
rTensor_reflects_triviality πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
rTensor_nontrivial
range_le_ker_of_exact_rTensor πŸ“–mathematicalFunction.Exact
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
TensorProduct.zero
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.range
RingHomSurjective.ids
LinearMap.ker
β€”RingHomSurjective.ids
LinearMap.mem_ker
Submodule.mem_span_singleton_self
Subtype.coe_ne_coe
Function.Exact.apply_apply_eq_zero
Submodule.ext
Submodule.mem_span_set
TensorProduct.span_tmul_eq_top
Submodule.mem_span_singleton
IsScalarTower.left
Finset.sum_eq_zero
Module.Flat.rTensor_preserves_injective_linearMap
toFlat
Submodule.injective_subtype
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
Submodule.isScalarTower'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.rTensor_tmul
Submodule.subtype_apply
smul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
not_subsingleton_iff_nontrivial
rTensor_reflects_triviality
self πŸ“–mathematicalβ€”Module.FaithfullyFlat
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Module.Flat.of_free
Module.Free.self
IsScalarTower.left
Iff.not
Ideal.eq_top_iff_one
Ideal.IsMaximal.ne_top
IsScalarTower.right
Ideal.mul_top
Ideal.instIsTwoSided_1
submodule_ne_top πŸ“–β€”β€”β€”β€”β€”
subsingleton_tensorProduct_iff_left πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”rTensor_reflects_triviality
Unique.instSubsingleton
subsingleton_tensorProduct_iff_right πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”lTensor_reflects_triviality
Unique.instSubsingleton
toFlat πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”β€”
trans πŸ“–mathematicalβ€”Module.FaithfullyFlatβ€”iff_zero_iff_lTensor_zero
Module.Flat.trans
toFlat
zero_iff_lTensor_zero
IsScalarTower.to_smulCommClass
IsScalarTower.right
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
Algebra.to_smulCommClass
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass'
LinearMap.ext_ring
LinearEquiv.injective
smulCommClass_self
RingHomInvPair.ids
one_smul
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
LinearMap.lTensor_zero
zero_iff_lTensor_zero πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instZero
LinearMap.lTensor
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”LinearMap.lTensor_zero
lTensor_reflects_exact
RingHomSurjective.ids
LinearMap.exact_iff
LinearMap.range_zero
LinearMap.ker_eq_bot
Module.Flat.lTensor_preserves_injective_linearMap
toFlat
LinearMap.ext
zero_iff_rTensor_zero πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instZero
LinearMap.rTensor
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”zero_iff_lTensor_zero
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
LinearEquiv.injective
RingHomInvPair.ids
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass

Module.Flat

Theorems

NameKindAssumesProvesValidatesDepends On
iff_flat_tensorProduct πŸ“–mathematicalβ€”Module.Flat
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
Algebra.toModule
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
of_flat_tensorProduct
baseChange
of_flat_tensorProduct πŸ“–mathematicalβ€”Module.Flat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Algebra.to_smulCommClass
iff_lTensor_preserves_injective_linearMap
trans
TensorProduct.isScalarTower_left
IsScalarTower.right
Module.FaithfullyFlat.toFlat
Module.FaithfullyFlat.lTensor_injective_iff_injective
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
EquivLike.toEmbeddingLike
lTensor_preserves_injective_linearMap

---

← Back to Index