Documentation Verification Report

Inverse

πŸ“ Source: Mathlib/RingTheory/FractionalIdeal/Inverse.lean

Statistics

MetricCount
DefinitionsinstInvNonZeroDivisors, instInvOneClassNonZeroDivisors
2
Theoremsbot_lt_mul_inv, coe_ideal_le_self_mul_inv, coe_ideal_span_singleton_div_self, coe_ideal_span_singleton_inv_mul, coe_ideal_span_singleton_mul_inv, coe_inv_of_ne_zero, coe_inv_of_nonzero, den_mem_inv, inv_anti_mono, inv_eq, inv_nonzero, inv_of_ne_zero, inv_zero', invertible_iff_generator_nonzero, invertible_of_principal, isPrincipal_inv, le_self_mul_inv, map_inv, mem_inv_iff, mul_generator_self_inv, mul_inv_cancel_iff, mul_inv_cancel_iff_isUnit, num_le_mul_inv, right_inverse_eq, spanSingleton_div_self, spanSingleton_div_spanSingleton, spanSingleton_inv, spanSingleton_inv_mul, spanSingleton_mul_inv
29
Total31

FractionalIdeal

Definitions

NameCategoryTheorems
instInvNonZeroDivisors πŸ“–CompOp
45 mathmath: spanSingleton_inv_mul, spanSingleton_mul_inv, inv_anti_mono, invertible_of_principal, inv_le_inv_iff, right_inverse_eq, inv_nonzero, le_self_mul_inv, inv_eq, mul_inv_cancel, differentialIdeal_le_iff, coeIdeal_differentIdeal, inv_le_dual, div_eq_mul_inv, le_inv_comm, IsDedekindDomainInv.mul_inv_eq_one, num_le_mul_inv, coe_inv_of_ne_zero, differentialIdeal_le_fractionalIdeal_iff, dual_eq_mul_inv, one_mem_inv_coe_ideal, isPrincipal_inv, coe_ideal_mul_inv, map_inv, mul_inv_cancel_iff, coe_ideal_span_singleton_inv_mul, coe_inv_of_nonzero, IsDedekindDomainInv.inv_mul_eq_one, dual_inv, bot_lt_mul_inv, not_inv_le_one_of_ne_bot, mul_inv_cancel_iff_isUnit, inv_zero', count_inv, invertible_iff_generator_nonzero, dual_inv_le, coe_ideal_span_singleton_mul_inv, inv_le_comm, den_mem_inv, isDedekindDomainInv_iff, coe_ideal_le_self_mul_inv, mem_inv_iff, spanSingleton_inv, inv_of_ne_zero, exists_notMem_one_of_ne_bot
instInvOneClassNonZeroDivisors πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_mul_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
orderBot
instMul
instInvNonZeroDivisors
β€”lt_of_lt_of_le
Ne.bot_lt
coeIdeal_ne_zero
num_eq_zero_iff
num_le_mul_inv
coe_ideal_le_self_mul_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
coeIdeal
instMul
instInvNonZeroDivisors
β€”le_self_mul_inv
coeIdeal_le_one
coe_ideal_span_singleton_div_self πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
coeIdeal
Ideal.span
Set
Set.instSingletonSet
instOne
β€”coeIdeal_span_singleton
spanSingleton_div_self
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
IsFractionRing.instFaithfulSMul
coe_ideal_span_singleton_inv_mul πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instInvNonZeroDivisors
coeIdeal
Ideal.span
Set
Set.instSingletonSet
instOne
β€”mul_comm
coe_ideal_span_singleton_mul_inv
coe_ideal_span_singleton_mul_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
coeIdeal
Ideal.span
Set
Set.instSingletonSet
instInvNonZeroDivisors
instOne
β€”coeIdeal_span_singleton
spanSingleton_mul_inv
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
IsFractionRing.instFaithfulSMul
coe_inv_of_ne_zero πŸ“–mathematicalβ€”coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
FractionalIdeal
instInvNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semifield.toCommSemiring
Field.toSemifield
Algebra.toModule
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Submodule.instDiv
IsLocalization.coeSubmodule
Top.top
Ideal
Submodule.instTop
Semiring.toModule
β€”isFractional_div_of_ne_zero
inv_of_ne_zero
coe_one
IsLocalization.coeSubmodule_top
coe_inv_of_nonzero πŸ“–mathematicalβ€”coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
FractionalIdeal
instInvNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semifield.toCommSemiring
Field.toSemifield
Algebra.toModule
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Submodule.instDiv
IsLocalization.coeSubmodule
Top.top
Ideal
Submodule.instTop
Semiring.toModule
β€”coe_inv_of_ne_zero
den_mem_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
SetLike.instMembership
instSetLike
instInvNonZeroDivisors
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
den
β€”mem_inv_iff
Algebra.smul_def
mem_coe
coe_one
RingHomSurjective.ids
le_trans
Submodule.map_mono
Ideal.one_eq_top
Submodule.map_top
Submodule.one_eq_range
le_refl
smulCommClass_self
Submodule.smul_mem_pointwise_smul
Submonoid.smulCommClass_left
den_mul_self_eq_num
inv_anti_mono πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instInvNonZeroDivisorsβ€”mem_inv_iff
inv_eq πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instInvNonZeroDivisors
instDivNonZeroDivisors
instOne
β€”β€”
inv_nonzero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instInvNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
IsFractional
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
coeToSubmodule
instOne
isFractional_div_of_ne_zero
β€”inv_of_ne_zero
inv_of_ne_zero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instInvNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
IsFractional
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
coeToSubmodule
instOne
isFractional_div_of_ne_zero
β€”div_of_ne_zero
inv_zero' πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instInvNonZeroDivisors
instZero
β€”div_zero
invertible_iff_generator_nonzero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instInvNonZeroDivisors
instOne
β€”ne_zero_of_mul_eq_one
eq_spanSingleton_of_principal
spanSingleton_zero
invertible_of_principal
mem_spanSingleton_self
mem_zero_iff
invertible_of_principal πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instInvNonZeroDivisors
instOne
β€”mul_div_self_cancel_iff
mul_generator_self_inv
isPrincipal_inv πŸ“–mathematicalβ€”Submodule.IsPrincipal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
Submodule
IsFractional
nonZeroDivisors
Semiring.toMonoidWithZero
FractionalIdeal
instInvNonZeroDivisors
β€”val_eq_coe
isPrincipal_iff
mul_generator_self_inv
right_inverse_eq
le_self_mul_inv πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
instMul
instInvNonZeroDivisors
β€”le_self_mul_one_div
map_inv πŸ“–mathematicalβ€”map
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
AlgHomClass.toAlgHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
FractionalIdeal
instInvNonZeroDivisors
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
inv_eq
map_div
map_one
mem_inv_iff πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
SetLike.instMembership
instSetLike
instInvNonZeroDivisors
instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_div_iff_of_ne_zero
mul_generator_self_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Submodule.IsPrincipal.generator
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
coeToSubmodule
instOne
β€”eq_spanSingleton_of_principal
spanSingleton_mul_spanSingleton
mul_inv_cancelβ‚€
spanSingleton_zero
spanSingleton_one
mul_inv_cancel_iff πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instInvNonZeroDivisors
instOne
β€”right_inverse_eq
mul_inv_cancel_iff_isUnit πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instInvNonZeroDivisors
instOne
IsUnit
MonoidWithZero.toMonoid
commSemiring
β€”mul_inv_cancel_iff
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
num_le_mul_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
coeIdeal
num
instMul
instInvNonZeroDivisors
β€”num_zero_eq
FaithfulSMul.algebraMap_injective
IsFractionRing.instFaithfulSMul
MulZeroClass.zero_mul
Submodule.zero_eq_bot
coeIdeal_bot
le_refl
mul_comm
den_mul_self_eq_num'
mul_le_mul_left
instMulRightMono
spanSingleton_le_iff_mem
den_mem_inv
right_inverse_eq πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instOne
instInvNonZeroDivisorsβ€”eq_one_div_of_mul_eq_one_right
spanSingleton_div_self πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
spanSingleton
instOne
β€”spanSingleton_div_spanSingleton
div_self
spanSingleton_one
spanSingleton_div_spanSingleton πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
spanSingleton
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
β€”div_spanSingleton
mul_comm
spanSingleton_mul_spanSingleton
div_eq_mul_inv
spanSingleton_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instInvNonZeroDivisors
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”one_div_spanSingleton
spanSingleton_inv_mul πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instInvNonZeroDivisors
spanSingleton
instOne
β€”mul_comm
spanSingleton_mul_inv
spanSingleton_mul_inv πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
spanSingleton
instInvNonZeroDivisors
instOne
β€”spanSingleton_inv
spanSingleton_mul_spanSingleton
mul_inv_cancelβ‚€
spanSingleton_one

---

← Back to Index