Documentation Verification Report

Operations

πŸ“ Source: Mathlib/RingTheory/FractionalIdeal/Operations.lean

Statistics

MetricCount
DefinitionsadjoinIntegral, canonicalEquiv, instDivNonZeroDivisors, map, mapEquiv, spanFinset, spanSingleton, unitsMulEquivSubmodule
8
TheoremsadjoinIntegral_coe, canonicalEquiv_canonicalEquiv, canonicalEquiv_coeIdeal, canonicalEquiv_def, canonicalEquiv_flip, canonicalEquiv_self, canonicalEquiv_spanSingleton, canonicalEquiv_symm, canonicalEquiv_trans_canonicalEquiv, coeFun_mapEquiv, coeIdeal_eq_one, coeIdeal_eq_zero, coeIdeal_fg, coeIdeal_inj, coeIdeal_injective, coeIdeal_ne_one, coeIdeal_ne_zero, coeIdeal_span_singleton, coe_div, coe_map, coe_spanSingleton, constant_factor_ne_zero, den_mul_self_eq_num', div_nonzero, div_of_ne_zero, div_one, div_spanSingleton, div_zero, eq_one_div_of_mul_eq_one_right, eq_spanSingleton_mul, eq_spanSingleton_of_principal, eq_zero_or_one, eq_zero_or_one_of_isField, exists_eq_spanSingleton_mul, exists_ne_zero_mem_isInteger, fg_of_isUnit, fg_unit, fractional_div_of_nonzero, ideal_factor_ne_zero, instNontrivialNonZeroDivisors, isFractional_adjoin_integral, isFractional_div_of_ne_zero, isFractional_of_fg, isFractional_span_iff, isFractional_span_singleton, isNoetherian, isNoetherian_coeIdeal, isNoetherian_iff, isNoetherian_spanSingleton_inv_to_map_mul, isNoetherian_zero, isPrincipal, isPrincipal_iff, isPrincipal_of_isPrincipal_num, le_div_iff_mul_le, le_div_iff_of_ne_zero, le_div_iff_of_nonzero, le_self_mul_one_div, le_spanSingleton_mul_iff, mapEquiv_apply, mapEquiv_refl, mapEquiv_symm, map_add, map_coeIdeal, map_comp, map_div, map_eq_zero_iff, map_id, map_injective, map_map_symm, map_mem_map, map_mul, map_ne_zero, map_one, map_one_div, map_symm_map, map_zero, mem_adjoinIntegral_self, mem_canonicalEquiv_apply, mem_div_iff_of_ne_zero, mem_div_iff_of_nonzero, mem_map, mem_singleton_mul, mem_spanSingleton, mem_spanSingleton_self, mem_span_mul_finite_of_mem_mul, mk'_mul_coeIdeal_eq_coeIdeal, mul_div_self_cancel_iff, mul_one_div_le_one, ne_zero_of_mul_eq_one, num_eq_zero_iff, num_le, one_div_spanSingleton, spanFinset_coe, spanFinset_eq_zero, spanFinset_ne_zero, spanSingleton_def, spanSingleton_eq_spanSingleton, spanSingleton_eq_zero_iff, spanSingleton_le_iff_mem, spanSingleton_mul_coeIdeal_eq_coeIdeal, spanSingleton_mul_le_iff, spanSingleton_mul_spanSingleton, spanSingleton_ne_zero_iff, spanSingleton_one, spanSingleton_pow, spanSingleton_zero, fg_of_isUnit, div_of_nonzero, map, submodule_isFractional
110
Total118

FractionalIdeal

Definitions

NameCategoryTheorems
adjoinIntegral πŸ“–CompOp
2 mathmath: mem_adjoinIntegral_self, adjoinIntegral_coe
canonicalEquiv πŸ“–CompOp
14 mathmath: canonicalEquiv_trans_canonicalEquiv, canonicalEquiv_symm, canonicalEquiv_mk0, canonicalEquiv_spanSingleton, canonicalEquiv_coeIdeal, canonicalEquiv_canonicalEquiv, canonicalEquiv_flip, canonicalEquiv_def, map_canonicalEquiv_mk0, mem_canonicalEquiv_apply, canonicalEquiv_self, ClassGroup.mk_canonicalEquiv, ClassGroup.mk_def, ClassGroup.equiv_mk
instDivNonZeroDivisors πŸ“–CompOp
24 mathmath: map_one_div, div_one, le_div_iff_mul_le, le_div_iff_of_ne_zero, le_div_iff_of_nonzero, div_of_ne_zero, inv_eq, mem_div_iff_of_nonzero, one_div_spanSingleton, div_nonzero, eq_one_div_of_mul_eq_one_right, div_eq_mul_inv, coe_ideal_span_singleton_div_self, spanSingleton_div_spanSingleton, dual_div_dual, mul_one_div_le_one, map_div, div_spanSingleton, le_self_mul_one_div, div_zero, spanSingleton_div_self, coe_div, mem_div_iff_of_ne_zero, mul_div_self_cancel_iff
map πŸ“–CompOp
19 mathmath: mapEquiv_apply, map_one_div, mem_map, map_coeIdeal, map_comp, map_id, map_eq_zero_iff, coeFun_mapEquiv, map_div, map_inv, map_mul, coe_map, map_one, map_map_symm, map_add, map_symm_map, map_injective, map_mem_map, map_zero
mapEquiv πŸ“–CompOp
5 mathmath: mapEquiv_apply, mapEquiv_symm, coeFun_mapEquiv, canonicalEquiv_def, mapEquiv_refl
spanFinset πŸ“–CompOp
2 mathmath: spanFinset_eq_zero, spanFinset_coe
spanSingleton πŸ“–CompOp
42 mathmath: le_spanSingleton_mul_iff, spanSingleton_inv_mul, spanSingleton_mul_inv, coeIdeal_span_singleton, mem_principal_ideals_iff, mk'_mul_coeIdeal_eq_coeIdeal, spanSingleton_mul_spanSingleton, spanSingleton_le_iff_mem, one_div_spanSingleton, coe_toPrincipalIdeal, count_ne_zero, spanSingleton_pow, spanSingleton_mul_le_iff, mul_generator_self_inv, isNoetherian_spanSingleton_inv_to_map_mul, canonicalEquiv_spanSingleton, eq_spanSingleton_mul, isPrincipal_iff, spanSingleton_div_spanSingleton, mem_spanSingleton, absNorm_span_singleton, ClassGroup.mk0_eq_mk0_iff_exists_fraction_ring, spanSingleton_zero, toPrincipalIdeal_eq_iff, eq_spanSingleton_of_principal, spanSingleton_mul_coeIdeal_eq_coeIdeal, div_spanSingleton, mem_singleton_mul, mem_spanSingleton_self, spanSingleton_eq_zero_iff, divMod_spec, IsDedekindDomain.exists_add_spanSingleton_mul_eq, spanSingleton_eq_spanSingleton, exists_eq_spanSingleton_mul, coe_spanSingleton, toPrincipalIdeal_def, spanSingleton_one, spanSingleton_div_self, spanSingleton_def, den_mul_self_eq_num', finprod_heightOneSpectrum_factorization_principal_fraction, spanSingleton_inv
unitsMulEquivSubmodule πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoinIntegral_coe πŸ“–mathematicalIsIntegral
CommRing.toRing
coeToSubmodule
adjoinIntegral
DFunLike.coe
OrderEmbedding
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
Set
Set.instSingletonSet
β€”β€”
canonicalEquiv_canonicalEquiv πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
canonicalEquiv
β€”ext
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
IsLocalization.map_map
IsLocalization.map.congr_simp
canonicalEquiv_coeIdeal πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
canonicalEquiv
coeIdeal
β€”ext
IsLocalization.map_eq
canonicalEquiv_def πŸ“–mathematicalβ€”canonicalEquiv
mapEquiv
β€”β€”
canonicalEquiv_flip πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
canonicalEquiv
β€”canonicalEquiv_symm
RingEquiv.symm_apply_apply
canonicalEquiv_self πŸ“–mathematicalβ€”canonicalEquiv
RingEquiv.refl
FractionalIdeal
instMul
instAdd
β€”canonicalEquiv_trans_canonicalEquiv
canonicalEquiv_symm
RingEquiv.symm_trans_self
canonicalEquiv_spanSingleton πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
canonicalEquiv
spanSingleton
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
IsLocalization.map
RingHom.id
β€”SetLike.ext_iff
mem_spanSingleton
mem_canonicalEquiv_apply
IsLocalization.map_smul
RingHom.id_apply
canonicalEquiv_symm πŸ“–mathematicalβ€”RingEquiv.symm
FractionalIdeal
instMul
instAdd
canonicalEquiv
β€”RingEquiv.ext
SetLike.ext_iff
mem_canonicalEquiv_apply
canonicalEquiv_def
mapEquiv_symm
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
mapEquiv_apply
mem_map
canonicalEquiv_trans_canonicalEquiv πŸ“–mathematicalβ€”RingEquiv.trans
FractionalIdeal
instMul
instAdd
canonicalEquiv
β€”RingEquiv.ext
canonicalEquiv_canonicalEquiv
coeFun_mapEquiv πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mapEquiv
map
AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
coeIdeal_eq_one πŸ“–mathematicalβ€”coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
FractionalIdeal
instOne
Ideal
Submodule.one
Semiring.toModule
β€”Ideal.one_eq_top
coeIdeal_eq_zero πŸ“–mathematicalβ€”coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
FractionalIdeal
instZero
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”coeIdeal_eq_zero'
le_rfl
coeIdeal_fg πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Submodule.FG
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
coeToSubmodule
coeIdeal
Ideal.FG
β€”IsLocalization.coeSubmodule_fg
coeIdeal_inj πŸ“–mathematicalβ€”coeIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
β€”coeIdeal_inj'
le_rfl
coeIdeal_injective πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
Field.toCommRing
coeIdeal
β€”coeIdeal_injective'
le_rfl
coeIdeal_ne_one πŸ“–β€”β€”β€”β€”not_iff_not
coeIdeal_eq_one
coeIdeal_ne_zero πŸ“–β€”β€”β€”β€”coeIdeal_ne_zero'
le_rfl
coeIdeal_span_singleton πŸ“–mathematicalβ€”coeIdeal
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instSingletonSet
spanSingleton
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”ext
mem_coeIdeal
Submodule.mem_span_singleton
smul_eq_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Algebra.smul_def
mem_spanSingleton
coe_div πŸ“–mathematicalβ€”coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
FractionalIdeal
instDivNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
β€”isFractional_div_of_ne_zero
coe_map πŸ“–mathematicalβ€”coeToSubmodule
map
Submodule.map
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
RingHom.id
RingHomSurjective.ids
AlgHom.toLinearMap
β€”β€”
coe_spanSingleton πŸ“–mathematicalβ€”coeToSubmodule
spanSingleton
Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Set
Set.instSingletonSet
β€”isFractional_span_singleton
spanSingleton_def
constant_factor_ne_zero πŸ“–β€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
β€”β€”MulZeroClass.zero_mul
spanSingleton_zero
inv_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Ideal.span_singleton_eq_bot
Ideal.zero_eq_bot
den_mul_self_eq_num' πŸ“–mathematicalβ€”FractionalIdeal
instMul
spanSingleton
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
den
coeIdeal
num
β€”coeToSubmodule_injective
IsScalarTower.right
coe_mul
smul_eq_mul
coe_spanSingleton
IsScalarTower.to_smulCommClass'
Submodule.span_singleton_mul
smulCommClass_self
RingHomSurjective.ids
Submodule.ext
Submodule.mem_smul_pointwise_iff_exists
Submonoid.smulCommClass_left
Algebra.smul_def
den_mul_self_eq_num
div_nonzero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
IsFractional
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
coeToSubmodule
isFractional_div_of_ne_zero
β€”div_of_ne_zero
div_of_ne_zero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
IsFractional
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
coeToSubmodule
isFractional_div_of_ne_zero
β€”isFractional_div_of_ne_zero
div_one πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
instOne
β€”isFractional_div_of_ne_zero
one_ne_zero'
NeZero.one
instNontrivialNonZeroDivisors
div_of_ne_zero
ext
mul_one
Submodule.mem_div_iff_forall_mul_mem
coe_mem_one
RingHom.map_one
mul_comm
Algebra.linearMap_apply
Algebra.smul_def
Submodule.smul_mem
div_spanSingleton πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
spanSingleton
instMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”one_div_spanSingleton
spanSingleton.congr_simp
spanSingleton_zero
div_zero
MulZeroClass.zero_mul
spanSingleton_eq_zero_iff
le_antisymm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
mem_coe
IsScalarTower.right
coe_mul
Submodule.mul_mem_mul
mem_spanSingleton_self
Submodule.mem_div_iff_forall_mul_mem
coe_div
le_div_iff_mul_le
mul_assoc
mul_left_comm
spanSingleton_mul_spanSingleton
inv_mul_cancelβ‚€
spanSingleton_one
le_refl
div_zero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
instZero
β€”isFractional_div_of_ne_zero
eq_one_div_of_mul_eq_one_right πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instOne
instDivNonZeroDivisorsβ€”ne_zero_of_mul_eq_one
le_antisymm
mul_le
mul_comm
mem_div_iff_of_ne_zero
mul_le_mul_right
instMulLeftMono
le_div_iff_of_ne_zero
mul_mem_mul
instIsDedekindFiniteMonoid
Units.ext
eq_spanSingleton_mul πŸ“–mathematicalβ€”FractionalIdeal
instMul
spanSingleton
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
eq_spanSingleton_of_principal πŸ“–mathematicalβ€”spanSingleton
Submodule.IsPrincipal.generator
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
coeToSubmodule
β€”isFractional_span_singleton
spanSingleton_def
Submodule.IsPrincipal.span_singleton_generator
eq_zero_or_one πŸ“–mathematicalβ€”FractionalIdeal
Field.toCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instZero
instOne
β€”SetLike.ext_iff
IsLocalization.exists_mk'_eq
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.mk'_eq_div
exists_ne_zero_mem_isInteger
IsLocalRing.toNontrivial
Field.instIsLocalRing
div_mul_cancelβ‚€
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Algebra.smul_def
Submodule.smul_mem
eq_zero_or_one_of_isField πŸ“–mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
Field.toCommRing
instZero
instOne
β€”eq_zero_or_one
exists_eq_spanSingleton_mul πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
β€”isFractional
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
IsFractionRing.to_map_eq_zero_iff
ext
mem_coeIdeal
mem_singleton_mul
Algebra.smul_def
mul_assoc
inv_mul_cancelβ‚€
one_mul
Algebra.linearMap_apply
exists_ne_zero_mem_isInteger πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”SetLike.exists_of_lt
instIsConcreteLE
bot_lt_iff_ne_bot
IsLocalization.exists_integer_multiple
IsFractionRing.to_map_eq_zero_iff
Algebra.smul_def
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors
Submodule.smul_mem
fg_of_isUnit πŸ“–mathematicalIsUnit
FractionalIdeal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
Submodule.FG
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
coeToSubmodule
β€”fg_unit
fg_unit πŸ“–mathematicalβ€”Submodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
coeToSubmodule
Units.val
FractionalIdeal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
commSemiring
β€”Submodule.fg_unit
fractional_div_of_nonzero πŸ“–mathematicalβ€”IsFractional
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
coeToSubmodule
β€”isFractional_div_of_ne_zero
ideal_factor_ne_zero πŸ“–β€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
coeIdeal
β€”β€”MulZeroClass.mul_zero
coeIdeal_bot
Ideal.zero_eq_bot
instNontrivialNonZeroDivisors πŸ“–mathematicalβ€”Nontrivial
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
β€”RingHom.map_one
coe_mem_one
one_ne_zero
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
mem_zero_iff
isFractional_adjoin_integral πŸ“–mathematicalIsIntegral
CommRing.toRing
IsFractional
DFunLike.coe
OrderEmbedding
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
Set
Set.instSingletonSet
β€”isFractional_of_fg
IsIntegral.fg_adjoin_singleton
isFractional_div_of_ne_zero πŸ“–mathematicalβ€”IsFractional
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
coeToSubmodule
β€”IsFractional.div_of_nonzero
isFractional
coeToSubmodule_injective
coe_zero
isFractional_of_fg πŸ“–mathematicalSubmodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
IsFractionalβ€”IsLocalization.exist_integer_multiples_of_finset
isFractional_span_iff
isFractional_span_iff πŸ“–mathematicalβ€”IsFractional
Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
IsLocalization.IsInteger
Algebra.toSMul
β€”Submodule.subset_span
Submodule.span_induction
smul_zero
IsLocalization.isInteger_zero
smul_add
IsLocalization.isInteger_add
SMulCommClass.smul_comm
smulCommClass_self
IsLocalization.isInteger_smul
isFractional_span_singleton πŸ“–mathematicalβ€”IsFractional
Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Set
Set.instSingletonSet
β€”IsLocalization.exists_integer_multiple
isFractional_span_iff
Set.mem_singleton_iff
isNoetherian πŸ“–mathematicalβ€”IsNoetherian
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
Submodule.addCommMonoid
instModuleSubtypeMemSubmoduleCoeToSubmodule
β€”exists_eq_spanSingleton_mul
isNoetherian_spanSingleton_inv_to_map_mul
isNoetherian_coeIdeal
isNoetherian_coeIdeal πŸ“–mathematicalβ€”IsNoetherian
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
coeIdeal
Submodule.addCommMonoid
instModuleSubtypeMemSubmoduleCoeToSubmodule
β€”isNoetherian_iff
le_one_iff_exists_coeIdeal
le_trans
coeIdeal_le_one
Submodule.FG.map
RingHomSurjective.ids
IsNoetherian.noetherian
isNoetherian_iff πŸ“–mathematicalβ€”IsNoetherian
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
Submodule.addCommMonoid
instModuleSubtypeMemSubmoduleCoeToSubmodule
Submodule.FG
β€”isNoetherian_submodule
isFractional_of_le
isNoetherian_spanSingleton_inv_to_map_mul πŸ“–mathematicalβ€”IsNoetherian
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
FractionalIdeal
instMul
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Submodule.addCommMonoid
instModuleSubtypeMemSubmoduleCoeToSubmodule
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
inv_zero
spanSingleton_zero
MulZeroClass.zero_mul
isNoetherian_zero
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
IsFractionRing.injective
spanSingleton_ne_zero_iff
isNoetherian_iff
le_div_iff_mul_le
div_spanSingleton
Finset.coe_mul
Finset.coe_singleton
IsScalarTower.right
Submodule.span_mul_span
coe_spanSingleton
coe_mul
mul_assoc
spanSingleton_mul_spanSingleton
mul_inv_cancelβ‚€
spanSingleton_one
mul_one
isNoetherian_zero πŸ“–mathematicalβ€”IsNoetherian
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
SetLike.instMembership
Submodule.setLike
coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
FractionalIdeal
instZero
Submodule.addCommMonoid
instModuleSubtypeMemSubmoduleCoeToSubmodule
β€”isNoetherian_submodule
le_bot_iff
coe_zero
Submodule.fg_bot
isPrincipal πŸ“–mathematicalβ€”Submodule.IsPrincipal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
β€”exists_eq_spanSingleton_mul
IsPrincipalIdealRing.principal
Submodule.IsPrincipal.span_singleton_generator
Ideal.submodule_span_eq
coeIdeal_span_singleton
spanSingleton_mul_spanSingleton
isFractional_span_singleton
spanSingleton_def
isPrincipal_iff πŸ“–mathematicalβ€”Submodule.IsPrincipal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
coeToSubmodule
spanSingleton
β€”eq_spanSingleton_of_principal
coe_spanSingleton
isPrincipal_of_isPrincipal_num πŸ“–mathematicalβ€”Submodule.IsPrincipal
FractionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
OreLocalization.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
Algebra.toModule
OreLocalization.instAlgebra
Algebra.id
coeToSubmodule
β€”Module.isPrincipal_submodule_iff
LinearEquiv.isPrincipal_iff
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
Localization.isLocalization
le_div_iff_mul_le πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDivNonZeroDivisors
instMul
β€”isFractional_div_of_ne_zero
div_of_ne_zero
coe_le_coe
IsScalarTower.right
coe_mul
Submodule.le_div_iff_mul_le
le_div_iff_of_ne_zero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDivNonZeroDivisors
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_div_iff_of_ne_zero
le_div_iff_of_nonzero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instDivNonZeroDivisors
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”le_div_iff_of_ne_zero
le_self_mul_one_div πŸ“–mathematicalFractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOne
instMul
instDivNonZeroDivisors
β€”div_zero
MulZeroClass.mul_zero
le_refl
coe_le_coe
IsScalarTower.right
coe_mul
coe_div
coe_one
Submodule.le_self_mul_one_div
le_spanSingleton_mul_iff πŸ“–mathematicalβ€”FractionalIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
spanSingleton
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
mapEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mapEquiv
map
AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
mapEquiv_refl πŸ“–mathematicalβ€”mapEquiv
AlgEquiv.refl
CommRing.toCommSemiring
CommSemiring.toSemiring
RingEquiv.refl
FractionalIdeal
instMul
instAdd
β€”RingEquiv.ext
map_id
mapEquiv_symm πŸ“–mathematicalβ€”RingEquiv.symm
FractionalIdeal
instMul
instAdd
mapEquiv
AlgEquiv.symm
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”β€”
map_add πŸ“–mathematicalβ€”map
FractionalIdeal
instAdd
β€”coeToSubmodule_injective
Submodule.map_sup
RingHomSurjective.ids
map_coeIdeal πŸ“–mathematicalβ€”map
coeIdeal
β€”ext
AlgHom.commutes
map_comp πŸ“–mathematicalβ€”map
AlgHom.comp
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”coeToSubmodule_injective
Submodule.map_comp
RingHomCompTriple.ids
RingHomSurjective.ids
map_div πŸ“–mathematicalβ€”map
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
AlgHomClass.toAlgHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
FractionalIdeal
instDivNonZeroDivisors
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
div_zero
map_zero
isFractional_div_of_ne_zero
RingHomSurjective.ids
map_ne_zero
IsDomain.toNontrivial
div_of_ne_zero
Submodule.map_div
map_eq_zero_iff πŸ“–mathematicalβ€”map
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
FractionalIdeal
instZero
β€”not_imp_not
map_ne_zero
map_zero
map_id πŸ“–mathematicalβ€”map
AlgHom.id
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”coeToSubmodule_injective
Submodule.map_id
map_injective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
FractionalIdeal
map
β€”ext
map_mem_map
map_map_symm πŸ“–mathematicalβ€”map
AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_comp
AlgEquiv.symm_comp
map_id
map_mem_map πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
FractionalIdeal
SetLike.instMembership
instSetLike
map
β€”mem_map
map_mul πŸ“–mathematicalβ€”map
FractionalIdeal
instMul
β€”IsScalarTower.right
IsFractional.mul
isFractional
mul_def
coeToSubmodule_injective
Submodule.map_mul
map_ne_zero πŸ“–β€”β€”β€”β€”exists_ne_zero_mem_isInteger
Mathlib.Tactic.Contrapose.contraposeβ‚„
IsFractionRing.to_map_eq_zero_iff
eq_zero_iff
mem_map
AlgHom.commutes
map_one πŸ“–mathematicalβ€”map
FractionalIdeal
instOne
β€”map_coeIdeal
map_one_div πŸ“–mathematicalβ€”map
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
AlgHomClass.toAlgHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
FractionalIdeal
instDivNonZeroDivisors
instOne
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_div
map_one
map_symm_map πŸ“–mathematicalβ€”map
AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_comp
AlgEquiv.comp_symm
map_id
map_zero πŸ“–mathematicalβ€”map
FractionalIdeal
instZero
β€”map_coeIdeal
mem_adjoinIntegral_self πŸ“–mathematicalIsIntegral
CommRing.toRing
FractionalIdeal
SetLike.instMembership
instSetLike
adjoinIntegral
β€”Algebra.subset_adjoin
Set.mem_singleton
mem_canonicalEquiv_apply πŸ“–mathematicalβ€”FractionalIdeal
SetLike.instMembership
instSetLike
DFunLike.coe
RingEquiv
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
canonicalEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
IsLocalization.map
RingHom.id
β€”canonicalEquiv_def
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
mapEquiv_apply
mem_map
mem_div_iff_of_ne_zero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
SetLike.instMembership
instSetLike
instDivNonZeroDivisors
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”isFractional_div_of_ne_zero
div_of_ne_zero
Submodule.mem_div_iff_forall_mul_mem
mem_div_iff_of_nonzero πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
SetLike.instMembership
instSetLike
instDivNonZeroDivisors
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_div_iff_of_ne_zero
mem_map πŸ“–mathematicalβ€”FractionalIdeal
SetLike.instMembership
instSetLike
map
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
β€”Submodule.mem_map
RingHomSurjective.ids
mem_singleton_mul πŸ“–mathematicalβ€”FractionalIdeal
SetLike.instMembership
instSetLike
instMul
spanSingleton
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mul_induction_on
mem_spanSingleton
Submodule.smul_mem
Algebra.mul_smul_comm
Algebra.smul_mul_assoc
Submodule.add_mem
mul_add
Distrib.leftDistribClass
mul_mem_mul
one_smul
mem_spanSingleton πŸ“–mathematicalβ€”FractionalIdeal
SetLike.instMembership
instSetLike
spanSingleton
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”isFractional_span_singleton
spanSingleton_def
Submodule.mem_span_singleton
mem_spanSingleton_self πŸ“–mathematicalβ€”FractionalIdeal
SetLike.instMembership
instSetLike
spanSingleton
β€”mem_spanSingleton
one_smul
mem_span_mul_finite_of_mem_mul πŸ“–mathematicalFractionalIdeal
SetLike.instMembership
instSetLike
instMul
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Submodule.setLike
Submodule.span
Set.mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Submodule.mem_span_mul_finite_of_mem_mul
IsScalarTower.right
coe_mul
mem_coe
mk'_mul_coeIdeal_eq_coeIdeal πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
FractionalIdeal
Field.toCommRing
instMul
spanSingleton
IsLocalization.mk'
Semifield.toCommSemiring
Field.toSemifield
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
coeIdeal
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.span
Set
Set.instSingletonSet
β€”spanSingleton_mul_spanSingleton
mul_comm
IsLocalization.mk'_eq_mul_mk'_one
IsLocalization.mk'_self
spanSingleton_one
instIsDedekindFiniteMonoid
IsScalarTower.right
coeIdeal_mul
coeIdeal_span_singleton
mul_assoc
one_mul
mul_div_self_cancel_iff πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instDivNonZeroDivisors
instOne
β€”eq_one_div_of_mul_eq_one_right
mul_one_div_le_one πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
instDivNonZeroDivisors
instOne
β€”div_zero
MulZeroClass.mul_zero
zero_le
coe_le_coe
IsScalarTower.right
coe_mul
coe_div
coe_one
Submodule.mul_one_div_le_one
ne_zero_of_mul_eq_one πŸ“–β€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
instOne
β€”β€”zero_ne_one'
NeZero.one
instNontrivialNonZeroDivisors
MulZeroClass.zero_mul
num_eq_zero_iff πŸ“–mathematicalβ€”num
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Ideal
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
FractionalIdeal
instZero
β€”zero_of_num_eq_bot
FaithfulSMul.to_isTorsionFree
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsFractionRing.instFaithfulSMul
IsDomain.toNontrivial
instIsDomain
zero_notMem_nonZeroDivisors
num_zero_eq
IsFractionRing.injective
num_le πŸ“–mathematicalβ€”FractionalIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
coeIdeal
num
β€”den_mul_self_eq_num'
spanSingleton_mul_le_iff
Algebra.smul_def
Submodule.smul_mem
one_div_spanSingleton πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instDivNonZeroDivisors
instOne
spanSingleton
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”spanSingleton.congr_simp
spanSingleton_zero
div_zero
inv_zero
eq_one_div_of_mul_eq_one_right
spanSingleton_mul_spanSingleton
mul_inv_cancelβ‚€
spanSingleton_one
spanFinset_coe πŸ“–mathematicalβ€”coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
spanFinset
Submodule.span
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Set.image
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
spanFinset_eq_zero πŸ“–mathematicalβ€”spanFinset
FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”coe_zero
spanFinset_ne_zero πŸ“–mathematicalβ€”Finset
Finset.instMembership
β€”β€”
spanSingleton_def πŸ“–mathematicalβ€”spanSingleton
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
IsFractional
Submodule.span
Set
Set.instSingletonSet
isFractional_span_singleton
β€”isFractional_span_singleton
spanSingleton_eq_spanSingleton πŸ“–mathematicalβ€”spanSingleton
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instSMul
Algebra.toSMul
β€”Submodule.span_singleton_eq_span_singleton
isFractional_span_singleton
spanSingleton_def
spanSingleton_eq_zero_iff πŸ“–mathematicalβ€”spanSingleton
FractionalIdeal
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Submodule.span_eq_bot
coe_spanSingleton
coe_zero
Set.mem_singleton
spanSingleton.congr_simp
spanSingleton_zero
spanSingleton_le_iff_mem πŸ“–mathematicalβ€”FractionalIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
spanSingleton
SetLike.instMembership
instSetLike
β€”coe_le_coe
coe_spanSingleton
Submodule.span_singleton_le_iff_mem
mem_coe
spanSingleton_mul_coeIdeal_eq_coeIdeal πŸ“–mathematicalβ€”FractionalIdeal
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
instMul
spanSingleton
coeIdeal
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.span
Set
Set.instSingletonSet
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
IsLocalization.sec
Semifield.toCommSemiring
Field.toSemifield
β€”IsScalarTower.right
Subtype.prop
mk'_mul_coeIdeal_eq_coeIdeal
IsLocalization.mk'_sec
spanSingleton_mul_le_iff πŸ“–mathematicalβ€”FractionalIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMul
spanSingleton
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”one_smul
Algebra.smul_mul_assoc
Submodule.smul_mem
spanSingleton_mul_spanSingleton πŸ“–mathematicalβ€”FractionalIdeal
instMul
spanSingleton
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”coeToSubmodule_injective
IsScalarTower.right
coe_mul
coe_spanSingleton
Submodule.span_mul_span
Set.singleton_mul_singleton
spanSingleton_ne_zero_iff πŸ“–β€”β€”β€”β€”spanSingleton_eq_zero_iff
spanSingleton_one πŸ“–mathematicalβ€”spanSingleton
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
FractionalIdeal
instOne
β€”ext
mem_spanSingleton
Algebra.smul_def
mul_one
mem_one_iff
spanSingleton_pow πŸ“–mathematicalβ€”FractionalIdeal
instPowNat
spanSingleton
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”pow_zero
spanSingleton_one
pow_succ
spanSingleton_mul_spanSingleton
spanSingleton_zero πŸ“–mathematicalβ€”spanSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
FractionalIdeal
instZero
β€”ext
smul_zero
Zero.instNonempty

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
fg_of_isUnit πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsUnit
FractionalIdeal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
FractionalIdeal.commSemiring
FractionalIdeal.coeIdeal
FGβ€”FractionalIdeal.coeIdeal_fg
FractionalIdeal.fg_of_isUnit

IsFractional

Theorems

NameKindAssumesProvesValidatesDepends On
div_of_nonzero πŸ“–mathematicalIsFractional
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Field.toCommRing
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule.instDiv
Semifield.toCommSemiring
β€”SetLike.exists_of_lt
instIsConcreteLE
bot_lt_iff_ne_bot
Submonoid.mul_mem
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
Algebra.smul_def
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_eq_zero
instIsDomain
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
IsFractionRing.injective
mul_comm
SemigroupAction.mul_smul
Submodule.smul_mem
map πŸ“–mathematicalIsFractionalSubmodule.map
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
RingHom.id
RingHomSurjective.ids
AlgHom.toLinearMap
β€”RingHomSurjective.ids
Submodule.mem_map
AlgHom.commutes
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AlgHom.toLinearMap_apply

Units

Theorems

NameKindAssumesProvesValidatesDepends On
submodule_isFractional πŸ“–mathematicalβ€”IsFractional
val
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
β€”FractionalIdeal.isFractional_of_fg
Submodule.fg_unit

---

← Back to Index