π Source: Mathlib/RingTheory/FractionalIdeal/Operations.lean
adjoinIntegral
canonicalEquiv
instDivNonZeroDivisors
map
mapEquiv
spanFinset
spanSingleton
unitsMulEquivSubmodule
adjoinIntegral_coe
canonicalEquiv_canonicalEquiv
canonicalEquiv_coeIdeal
canonicalEquiv_def
canonicalEquiv_flip
canonicalEquiv_self
canonicalEquiv_spanSingleton
canonicalEquiv_symm
canonicalEquiv_trans_canonicalEquiv
coeFun_mapEquiv
coeIdeal_eq_one
coeIdeal_eq_zero
coeIdeal_fg
coeIdeal_inj
coeIdeal_injective
coeIdeal_ne_one
coeIdeal_ne_zero
coeIdeal_span_singleton
coe_div
coe_map
coe_spanSingleton
constant_factor_ne_zero
den_mul_self_eq_num'
div_nonzero
div_of_ne_zero
div_one
div_spanSingleton
div_zero
eq_one_div_of_mul_eq_one_right
eq_spanSingleton_mul
eq_spanSingleton_of_principal
eq_zero_or_one
eq_zero_or_one_of_isField
exists_eq_spanSingleton_mul
exists_ne_zero_mem_isInteger
fg_of_isUnit
fg_unit
fractional_div_of_nonzero
ideal_factor_ne_zero
instNontrivialNonZeroDivisors
isFractional_adjoin_integral
isFractional_div_of_ne_zero
isFractional_of_fg
isFractional_span_iff
isFractional_span_singleton
isNoetherian
isNoetherian_coeIdeal
isNoetherian_iff
isNoetherian_spanSingleton_inv_to_map_mul
isNoetherian_zero
isPrincipal
isPrincipal_iff
isPrincipal_of_isPrincipal_num
le_div_iff_mul_le
le_div_iff_of_ne_zero
le_div_iff_of_nonzero
le_self_mul_one_div
le_spanSingleton_mul_iff
mapEquiv_apply
mapEquiv_refl
mapEquiv_symm
map_add
map_coeIdeal
map_comp
map_div
map_eq_zero_iff
map_id
map_injective
map_map_symm
map_mem_map
map_mul
map_ne_zero
map_one
map_one_div
map_symm_map
map_zero
mem_adjoinIntegral_self
mem_canonicalEquiv_apply
mem_div_iff_of_ne_zero
mem_div_iff_of_nonzero
mem_map
mem_singleton_mul
mem_spanSingleton
mem_spanSingleton_self
mem_span_mul_finite_of_mem_mul
mk'_mul_coeIdeal_eq_coeIdeal
mul_div_self_cancel_iff
mul_one_div_le_one
ne_zero_of_mul_eq_one
num_eq_zero_iff
num_le
one_div_spanSingleton
spanFinset_coe
spanFinset_eq_zero
spanFinset_ne_zero
spanSingleton_def
spanSingleton_eq_spanSingleton
spanSingleton_eq_zero_iff
spanSingleton_le_iff_mem
spanSingleton_mul_coeIdeal_eq_coeIdeal
spanSingleton_mul_le_iff
spanSingleton_mul_spanSingleton
spanSingleton_ne_zero_iff
spanSingleton_one
spanSingleton_pow
spanSingleton_zero
div_of_nonzero
submodule_isFractional
canonicalEquiv_mk0
map_canonicalEquiv_mk0
ClassGroup.mk_canonicalEquiv
ClassGroup.mk_def
ClassGroup.equiv_mk
inv_eq
div_eq_mul_inv
coe_ideal_span_singleton_div_self
spanSingleton_div_spanSingleton
dual_div_dual
spanSingleton_div_self
map_inv
spanSingleton_inv_mul
spanSingleton_mul_inv
mem_principal_ideals_iff
coe_toPrincipalIdeal
count_ne_zero
mul_generator_self_inv
absNorm_span_singleton
ClassGroup.mk0_eq_mk0_iff_exists_fraction_ring
toPrincipalIdeal_eq_iff
divMod_spec
IsDedekindDomain.exists_add_spanSingleton_mul_eq
toPrincipalIdeal_def
finprod_heightOneSpectrum_factorization_principal_fraction
spanSingleton_inv
IsIntegral
CommRing.toRing
coeToSubmodule
DFunLike.coe
OrderEmbedding
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
Set
Set.instSingletonSet
RingEquiv
FractionalIdeal
instMul
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ext
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
IsLocalization.map_map
IsLocalization.map.congr_simp
coeIdeal
IsLocalization.map_eq
RingEquiv.symm_apply_apply
RingEquiv.refl
RingEquiv.symm_trans_self
RingHom
RingHom.instFunLike
IsLocalization.map
RingHom.id
SetLike.ext_iff
IsLocalization.map_smul
RingHom.id_apply
RingEquiv.symm
RingEquiv.ext
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
RingEquiv.trans
AlgHomClass.toAlgHom
AlgEquiv
AlgEquiv.instFunLike
AlgEquiv.instEquivLike
nonZeroDivisors
Semiring.toMonoidWithZero
Field.toCommRing
instOne
Ideal
Submodule.one
Semiring.toModule
Ideal.one_eq_top
instZero
Bot.bot
Submodule.instBot
coeIdeal_eq_zero'
le_rfl
algebraMap
Submodule.FG
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.FG
IsLocalization.coeSubmodule_fg
coeIdeal_inj'
coeIdeal_injective'
not_iff_not
coeIdeal_ne_zero'
Ideal.span
mem_coeIdeal
Submodule.mem_span_singleton
smul_eq_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Algebra.smul_def
Submodule.instDiv
Semifield.toCommSemiring
Field.toSemifield
Submodule.map
RingHomSurjective.ids
AlgHom.toLinearMap
Submodule.span
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulZeroClass.zero_mul
inv_zero
MonoidWithZeroHomClass.toZeroHomClass
Ideal.span_singleton_eq_bot
Ideal.zero_eq_bot
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
den
num
coeToSubmodule_injective
IsScalarTower.right
coe_mul
IsScalarTower.to_smulCommClass'
Submodule.span_singleton_mul
smulCommClass_self
Submodule.ext
Submodule.mem_smul_pointwise_iff_exists
Submonoid.smulCommClass_left
den_mul_self_eq_num
IsFractional
one_ne_zero'
NeZero.one
mul_one
Submodule.mem_div_iff_forall_mul_mem
coe_mem_one
RingHom.map_one
mul_comm
Algebra.linearMap_apply
Submodule.smul_mem
spanSingleton.congr_simp
le_antisymm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
mem_coe
Submodule.mul_mem_mul
mul_assoc
mul_left_comm
inv_mul_cancelβ
le_refl
mul_le
mul_le_mul_right
instMulLeftMono
mul_mem_mul
instIsDedekindFiniteMonoid
Units.ext
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Submodule.IsPrincipal.generator
Submodule.IsPrincipal.span_singleton_generator
IsLocalization.exists_mk'_eq
map_divβ
IsFractionRing.mk'_eq_div
IsLocalRing.toNontrivial
Field.instIsLocalRing
div_mul_cancelβ
IsField
isFractional
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
IsFractionRing.to_map_eq_zero_iff
SetLike.exists_of_lt
instIsConcreteLE
bot_lt_iff_ne_bot
IsLocalization.exists_integer_multiple
mul_ne_zero
instIsDomain
IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors
IsUnit
MonoidWithZero.toMonoid
commSemiring
Units.val
Submodule.fg_unit
MulZeroClass.mul_zero
coeIdeal_bot
Nontrivial
mem_zero_iff
Ring.toSemiring
IsIntegral.fg_adjoin_singleton
IsFractional.div_of_nonzero
coe_zero
IsLocalization.exist_integer_multiples_of_finset
IsLocalization.IsInteger
Algebra.toSMul
Submodule.subset_span
Submodule.span_induction
smul_zero
IsLocalization.isInteger_zero
smul_add
IsLocalization.isInteger_add
SMulCommClass.smul_comm
IsLocalization.isInteger_smul
Set.mem_singleton_iff
IsNoetherian
Submodule.setLike
Submodule.addCommMonoid
instModuleSubtypeMemSubmoduleCoeToSubmodule
le_one_iff_exists_coeIdeal
le_trans
coeIdeal_le_one
Submodule.FG.map
IsNoetherian.noetherian
isNoetherian_submodule
isFractional_of_le
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
IsFractionRing.injective
Finset.coe_mul
Finset.coe_singleton
Submodule.span_mul_span
mul_inv_cancelβ
le_bot_iff
Submodule.fg_bot
Submodule.IsPrincipal
IsPrincipalIdealRing.principal
Ideal.submodule_span_eq
FractionRing
OreLocalization.instCommRing
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAlgebra
Algebra.id
Module.isPrincipal_submodule_iff
LinearEquiv.isPrincipal_iff
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
Localization.isLocalization
instPartialOrder
coe_le_coe
Submodule.le_div_iff_mul_le
coe_one
Submodule.le_self_mul_one_div
AlgEquiv.refl
AlgEquiv.symm
Submodule.map_sup
AlgHom.commutes
AlgHom.comp
Submodule.map_comp
Submodule.map_div
not_imp_not
AlgHom.id
Submodule.map_id
AlgHom
AlgHom.funLike
AlgEquiv.symm_comp
IsFractional.mul
mul_def
Submodule.map_mul
Mathlib.Tactic.Contrapose.contraposeβ
eq_zero_iff
AlgEquiv.comp_symm
Algebra.subset_adjoin
Set.mem_singleton
Submodule.mem_map
mul_induction_on
Algebra.mul_smul_comm
Algebra.smul_mul_assoc
Submodule.add_mem
mul_add
Distrib.leftDistribClass
one_smul
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.mul
Submodule.mem_span_mul_finite_of_mem_mul
MonoidWithZero.toMulZeroOneClass
IsLocalization.mk'
Submodule.mul
IsLocalization.mk'_eq_mul_mk'_one
IsLocalization.mk'_self
coeIdeal_mul
zero_le
Submodule.mul_one_div_le_one
zero_ne_one'
Submodule.pointwiseZero
zero_of_num_eq_bot
FaithfulSMul.to_isTorsionFree
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsFractionRing.instFaithfulSMul
zero_notMem_nonZeroDivisors
num_zero_eq
Set.image
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Finset.instMembership
Units
Units.instSMul
Submodule.span_singleton_eq_span_singleton
Submodule.span_eq_bot
Submodule.span_singleton_le_iff_mem
IsLocalization.sec
Subtype.prop
IsLocalization.mk'_sec
Set.singleton_mul_singleton
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
mem_one_iff
instPowNat
Monoid.toNatPow
pow_zero
pow_succ
Zero.instNonempty
FractionalIdeal.commSemiring
FractionalIdeal.coeIdeal
FG
FractionalIdeal.coeIdeal_fg
FractionalIdeal.fg_of_isUnit
Submonoid.mul_mem
mul_eq_zero
SemigroupAction.mul_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AlgHom.toLinearMap_apply
val
IdemSemiring.toSemiring
Submodule.idemSemiring
FractionalIdeal.isFractional_of_fg
---
β Back to Index