Documentation Verification Report

Ideal

πŸ“ Source: Mathlib/RingTheory/GradedAlgebra/Homogeneous/Ideal.lean

Statistics

MetricCount
DefinitionsHomogeneousIdeal, completeLattice, instAdd, instBot, instInfSet, instInhabited, instMax, instMin, instSupSet, instTop, irrelevant, setLike, toIdeal, IsHomogeneous, homogeneousCore, homogeneousCore', gi, homogeneousHull, gi, instMulHomogeneousIdeal, instPartialOrderHomogeneousIdeal
21
Theoremscoe_bot, coe_inf, coe_sup, coe_top, eq_bot_iff, eq_top_iff, ext, ext', ext_iff, homogeneousHull_toIdeal_eq_self, irrelevant_eq_closure, irrelevant_eq_iSup, irrelevant_eq_span, irrelevant_le, isHomogeneous, mem_iff, mem_irrelevant_iff, mem_irrelevant_of_mem, toAddSubmonoid_irrelevant_le, toIdeal_add, toIdeal_bot, toIdeal_homogeneousCore_eq_self, toIdeal_iInf, toIdeal_iInfβ‚‚, toIdeal_iSup, toIdeal_iSupβ‚‚, toIdeal_inf, toIdeal_injective, toIdeal_irrelevant, toIdeal_irrelevant_le, toIdeal_mul, toIdeal_sInf, toIdeal_sSup, toIdeal_sup, toIdeal_top, bot, iInf, iInfβ‚‚, iSup, iSupβ‚‚, iff_eq, iff_exists, inf, mem_iff, mul, sInf, sSup, sup, toIdeal_homogeneousCore_eq_self, toIdeal_homogeneousHull_eq_self, top, homogeneousCore'_eq_sSup, homogeneousCore'_le, homogeneousCore'_mono, gc, homogeneousCore_eq_sSup, homogeneousCore_mono, gc, homogeneousHull_eq_iSup, homogeneousHull_eq_sInf, homogeneousHull_mono, homogeneous_span, isHomogeneous_iff_forall_subset, isHomogeneous_iff_subset_iInter, le_toIdeal_homogeneousHull, mem_homogeneousCore_of_homogeneous_of_mem, mul_homogeneous_element_mem_of_mem, toIdeal_homogeneousCore_le, toIdeal_homogeneousHull_eq_iSup
69
Total90

HomogeneousIdeal

Definitions

NameCategoryTheorems
completeLattice πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
1 mathmath: toIdeal_add
instBot πŸ“–CompOp
3 mathmath: eq_bot_iff, coe_bot, toIdeal_bot
instInfSet πŸ“–CompOp
5 mathmath: ProjectiveSpectrum.vanishingIdeal_iUnion, toIdeal_iInf, toIdeal_sInf, toIdeal_iInfβ‚‚, Ideal.homogeneousHull_eq_sInf
instInhabited πŸ“–CompOpβ€”
instMax πŸ“–CompOp
4 mathmath: ProjectiveSpectrum.sup_vanishingIdeal_le, coe_sup, toIdeal_sup, ProjectiveSpectrum.zeroLocus_sup_homogeneousIdeal
instMin πŸ“–CompOp
3 mathmath: coe_inf, toIdeal_inf, ProjectiveSpectrum.vanishingIdeal_union
instSupSet πŸ“–CompOp
6 mathmath: toIdeal_iSupβ‚‚, toIdeal_sSup, Ideal.homogeneousHull_eq_iSup, ProjectiveSpectrum.zeroLocus_iSup_homogeneousIdeal, Ideal.homogeneousCore_eq_sSup, toIdeal_iSup
instTop πŸ“–CompOp
4 mathmath: toIdeal_top, coe_top, eq_top_iff, ProjectiveSpectrum.vanishingIdeal_univ
irrelevant πŸ“–CompOp
11 mathmath: mem_irrelevant_of_mem, toAddSubmonoid_irrelevant_le, ProjectiveSpectrum.not_irrelevant_le, irrelevant_le, mem_irrelevant_iff, irrelevant_eq_span, AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.relevant, irrelevant_eq_iSup, irrelevant_eq_closure, toIdeal_irrelevant_le, toIdeal_irrelevant
setLike πŸ“–CompOp
28 mathmath: ProjectiveSpectrum.mem_basicOpen, ProjectiveSpectrum.subset_zeroLocus_vanishingIdeal, ProjectiveSpectrum.gc_homogeneousIdeal, ProjectiveSpectrum.zeroLocus_mul_homogeneousIdeal, ProjectiveSpectrum.mem_vanishingIdeal, mem_irrelevant_of_mem, coe_bot, AlgebraicGeometry.Proj.mem_basicOpen, coe_inf, ProjectiveSpectrum.subset_zeroLocus_iff_subset_vanishingIdeal, ProjectiveSpectrum.mem_zeroLocus, ProjectiveSpectrum.gc_set, mem_irrelevant_iff, ProjectiveSpectrum.homogeneousIdeal_le_vanishingIdeal_zeroLocus, AlgebraicGeometry.ProjectiveSpectrum.Proj.mk_mem_toSpec_base_apply, coe_sup, ProjectiveSpectrum.zeroLocus_vanishingIdeal_eq_closure, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.mk_mem_carrier, coe_top, ProjectiveSpectrum.zeroLocus_anti_mono_homogeneousIdeal, ProjectiveSpectrum.zeroLocus_sup_homogeneousIdeal, ProjectiveSpectrum.zeroLocus_iSup_homogeneousIdeal, ProjectiveSpectrum.mem_compl_zeroLocus_iff_notMem, ProjectiveSpectrum.subset_vanishingIdeal_zeroLocus, ProjectiveSpectrum.mem_coe_basicOpen, Ideal.mem_homogeneousCore_of_homogeneous_of_mem, ProjectiveSpectrum.coe_vanishingIdeal, mem_iff
toIdeal πŸ“–CompOp
64 mathmath: AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, toIdeal_mul, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_specStalkEquiv, AlgebraicGeometry.Proj.pow_apply, AlgebraicGeometry.Proj.mul_apply, toIdeal_add, toIdeal_iInf, AlgebraicGeometry.Proj.one_apply, eq_bot_iff, toIdeal_homogeneousCore_eq_self, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToΞ“_Ξ“ToStalk, AlgebraicGeometry.Proj.sub_apply, AlgebraicGeometry.stalkToFiberRingHom_homogeneousLocalizationToStalk, toIdeal_bot, ProjectiveSpectrum.subset_zeroLocus_iff_le_vanishingIdeal, toIdeal_iSupβ‚‚, ProjectiveSpectrum.isPrime, Ideal.homogeneousHull.gc, AlgebraicGeometry.ProjectiveSpectrum.Proj.isLocalization_atPrime, AlgebraicGeometry.germ_comp_stalkToFiberRingHom, coe_radical, toIdeal_sSup, toIdeal_injective, toIdeal_sInf, Ideal.le_toIdeal_homogeneousHull, isHomogeneous, AlgebraicGeometry.Proj.zero_apply, toIdeal_top, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.one_mem', Ideal.IsPrime.homogeneousCore, Ideal.IsHomogeneous.toIdeal_homogeneousHull_eq_self, AlgebraicGeometry.Proj.ext_iff, ProjectiveSpectrum.gc_ideal, toIdeal_sup, AlgebraicGeometry.Proj.add_apply, Ideal.IsHomogeneous.iff_eq, irrelevant_eq_span, ProjectiveSpectrum.instIsPrimeToIdealNatAsHomogeneousIdeal, ProjectiveSpectrum.ideal_le_vanishingIdeal_zeroLocus, AlgebraicGeometry.stalkToFiberRingHom_germ, toIdeal_iInfβ‚‚, homogeneousHull_toIdeal_eq_self, Ideal.IsHomogeneous.toIdeal_homogeneousCore_eq_self, AlgebraicGeometry.Proj.stalkIso'_germ, AlgebraicGeometry.ProjectiveSpectrum.Proj.stalkMap_toSpec, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_apply_eq_comap, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_germ, AlgebraicGeometry.mem_basicOpen_den, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.zero_mem', Ideal.homogeneousCore_eq_sSup, toIdeal_irrelevant_le, eq_top_iff, AlgebraicGeometry.Proj.res_apply, Ideal.toIdeal_homogeneousCore_le, Ideal.toIdeal_homogeneousHull_eq_iSup, Ideal.homogeneousHull_eq_sInf, AlgebraicGeometry.Proj.stalkIso'_symm_mk, toIdeal_inf, toIdeal_iSup, toIdeal_irrelevant, mem_iff, ext_iff, Ideal.homogeneousCore.gc, AlgebraicGeometry.homogeneousLocalizationToStalk_stalkToFiberRingHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–mathematicalβ€”SetLike.coe
HomogeneousIdeal
setLike
Bot.bot
instBot
Set
Set.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
HomogeneousIdeal
setLike
instMin
Set
Set.instInter
β€”β€”
coe_sup πŸ“–mathematicalβ€”SetLike.coe
HomogeneousIdeal
setLike
instMax
Set
Set.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Submodule.coe_sup
coe_top πŸ“–mathematicalβ€”SetLike.coe
HomogeneousIdeal
setLike
Top.top
instTop
Set.univ
β€”β€”
eq_bot_iff πŸ“–mathematicalβ€”Bot.bot
HomogeneousIdeal
instBot
toIdeal
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”toIdeal_injective
eq_top_iff πŸ“–mathematicalβ€”Top.top
HomogeneousIdeal
instTop
toIdeal
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”toIdeal_injective
ext πŸ“–β€”toIdealβ€”β€”toIdeal_injective
ext' πŸ“–β€”HomogeneousIdeal
SetLike.instMembership
setLike
β€”β€”HomogeneousSubmodule.ext'
SetLike.GradedMul.toGradedSMul
GradedRing.toGradedMonoid
ext_iff πŸ“–mathematicalβ€”toIdealβ€”ext
homogeneousHull_toIdeal_eq_self πŸ“–mathematicalβ€”Ideal.homogeneousHull
toIdeal
β€”toIdeal_injective
Ideal.IsHomogeneous.toIdeal_homogeneousHull_eq_self
isHomogeneous
irrelevant_eq_closure πŸ“–mathematicalβ€”Submodule.toAddSubmonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousSubmodule.toSubmodule
AddCommMonoid.toAddMonoid
GradedRing.toDecomposition
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
irrelevant
AddSubmonoid.closure
AddMonoid.toAddZeroClass
Set.iUnion
Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
SetLike.coe
β€”irrelevant_eq_iSup
le_antisymm
iSup_le
AddSubmonoid.subset_closure
Set.mem_biUnion
AddSubmonoid.closure_le
Set.iUnion_subset
le_biSup
irrelevant_eq_iSup πŸ“–mathematicalβ€”Submodule.toAddSubmonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousSubmodule.toSubmodule
AddCommMonoid.toAddMonoid
GradedRing.toDecomposition
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
irrelevant
iSup
AddSubmonoid
AddMonoid.toAddZeroClass
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
AddSubmonoid.instCompleteLattice
Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddSubmonoid.ofClass
β€”le_antisymm
AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
sum_mem
AddSubmonoid.instAddSubmonoidClass
DFinsupp.mem_support_iff
RingHom.instRingHomClass
AddSubmonoid.mem_iSup_of_mem
pos_of_ne_zero
Subtype.prop
iSupβ‚‚_le
mem_irrelevant_of_mem
irrelevant_eq_span πŸ“–mathematicalβ€”toIdeal
AddCommMonoid.toAddMonoid
irrelevant
Ideal.span
Set.iUnion
Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SetLike.coe
β€”le_antisymm
Eq.trans_le
irrelevant_eq_closure
AddSubmonoid.closure_le
Ideal.subset_span
Ideal.span_le
Set.iUnion_subset
mem_irrelevant_of_mem
irrelevant_le πŸ“–mathematicalβ€”HomogeneousIdeal
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
irrelevant
AddSubmonoid
AddMonoid.toAddZeroClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddSubmonoid.instPartialOrder
AddSubmonoid.ofClass
Submodule.toAddSubmonoid
Semiring.toModule
HomogeneousSubmodule.toSubmodule
GradedRing.toDecomposition
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”toIdeal_irrelevant_le
isHomogeneous πŸ“–mathematicalβ€”Ideal.IsHomogeneous
toIdeal
β€”HomogeneousSubmodule.is_homogeneous'
mem_iff πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
toIdeal
HomogeneousIdeal
setLike
β€”β€”
mem_irrelevant_iff πŸ“–mathematicalβ€”HomogeneousIdeal
AddCommMonoid.toAddMonoid
SetLike.instMembership
setLike
irrelevant
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
GradedRing.proj
AddZero.toZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
mem_irrelevant_of_mem πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.instMembership
HomogeneousIdeal
setLike
irrelevant
β€”mem_irrelevant_iff
GradedRing.proj_apply
DirectSum.decompose_of_mem
DirectSum.of_eq_of_ne
ZeroMemClass.coe_zero
toAddSubmonoid_irrelevant_le πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
AddSubmonoid.instPartialOrder
Submodule.toAddSubmonoid
Semiring.toModule
HomogeneousSubmodule.toSubmodule
GradedRing.toDecomposition
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
irrelevant
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.ofClass
β€”irrelevant_eq_iSup
iSupβ‚‚_le_iff
toIdeal_add πŸ“–mathematicalβ€”toIdeal
HomogeneousIdeal
instAdd
Ideal
Submodule.pointwiseAdd
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
toIdeal_bot πŸ“–mathematicalβ€”toIdeal
Bot.bot
HomogeneousIdeal
instBot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
toIdeal_homogeneousCore_eq_self πŸ“–mathematicalβ€”Ideal.homogeneousCore
toIdeal
β€”ext
Ideal.IsHomogeneous.toIdeal_homogeneousCore_eq_self
isHomogeneous
toIdeal_iInf πŸ“–mathematicalβ€”toIdeal
iInf
HomogeneousIdeal
instInfSet
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”iInf.eq_1
toIdeal_sInf
iInf_range
toIdeal_iInfβ‚‚ πŸ“–mathematicalβ€”toIdeal
iInf
HomogeneousIdeal
instInfSet
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”toIdeal_iInf
toIdeal_iSup πŸ“–mathematicalβ€”toIdeal
iSup
HomogeneousIdeal
instSupSet
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”iSup.eq_1
toIdeal_sSup
iSup_range
toIdeal_iSupβ‚‚ πŸ“–mathematicalβ€”toIdeal
iSup
HomogeneousIdeal
instSupSet
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”toIdeal_iSup
toIdeal_inf πŸ“–mathematicalβ€”toIdeal
HomogeneousIdeal
instMin
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
toIdeal_injective πŸ“–mathematicalβ€”HomogeneousIdeal
Ideal
toIdeal
β€”HomogeneousSubmodule.toSubmodule_injective
SetLike.GradedMul.toGradedSMul
GradedRing.toGradedMonoid
toIdeal_irrelevant πŸ“–mathematicalβ€”toIdeal
AddCommMonoid.toAddMonoid
irrelevant
RingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
GradedRing.projZeroRingHom
β€”β€”
toIdeal_irrelevant_le πŸ“–mathematicalβ€”Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
toIdeal
AddCommMonoid.toAddMonoid
irrelevant
AddSubmonoid
AddMonoid.toAddZeroClass
AddSubmonoid.instPartialOrder
AddSubmonoid.ofClass
Submodule.toAddSubmonoid
β€”toAddSubmonoid_irrelevant_le
toIdeal_mul πŸ“–mathematicalβ€”toIdeal
CommSemiring.toSemiring
HomogeneousIdeal
instMulHomogeneousIdeal
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
β€”β€”
toIdeal_sInf πŸ“–mathematicalβ€”toIdeal
InfSet.sInf
HomogeneousIdeal
instInfSet
iInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
β€”β€”
toIdeal_sSup πŸ“–mathematicalβ€”toIdeal
SupSet.sSup
HomogeneousIdeal
instSupSet
iSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
β€”β€”
toIdeal_sup πŸ“–mathematicalβ€”toIdeal
HomogeneousIdeal
instMax
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
toIdeal_top πŸ“–mathematicalβ€”toIdeal
Top.top
HomogeneousIdeal
instTop
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”

Ideal

Definitions

NameCategoryTheorems
IsHomogeneous πŸ“–MathDef
10 mathmath: IsHomogeneous.iff_exists, isHomogeneous_iff_subset_iInter, isHomogeneous_iff_forall_subset, IsHomogeneous.bot, HomogeneousIdeal.isHomogeneous, AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.asIdeal.homogeneous, IsHomogeneous.iff_eq, homogeneousCore'_eq_sSup, homogeneous_span, IsHomogeneous.top
homogeneousCore πŸ“–CompOp
9 mathmath: HomogeneousIdeal.toIdeal_homogeneousCore_eq_self, IsPrime.homogeneousCore, IsHomogeneous.iff_eq, IsHomogeneous.toIdeal_homogeneousCore_eq_self, homogeneousCore_eq_sSup, mem_homogeneousCore_of_homogeneous_of_mem, homogeneousCore_mono, toIdeal_homogeneousCore_le, homogeneousCore.gc
homogeneousCore' πŸ“–CompOp
3 mathmath: homogeneousCore'_le, homogeneousCore'_eq_sSup, homogeneousCore'_mono
homogeneousHull πŸ“–CompOp
8 mathmath: homogeneousHull.gc, homogeneousHull_eq_iSup, homogeneousHull_mono, le_toIdeal_homogeneousHull, IsHomogeneous.toIdeal_homogeneousHull_eq_self, HomogeneousIdeal.homogeneousHull_toIdeal_eq_self, toIdeal_homogeneousHull_eq_iSup, homogeneousHull_eq_sInf

Theorems

NameKindAssumesProvesValidatesDepends On
homogeneousCore'_eq_sSup πŸ“–mathematicalβ€”homogeneousCore'
SupSet.sSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
setOf
IsHomogeneous
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”IsLUB.sSup_eq
IsGreatest.isLUB
Set.ext
Set.mem_image
Set.mem_setOf_eq
HomogeneousIdeal.isHomogeneous
Monotone.map_isGreatest
GaloisConnection.isGreatest_u
homogeneousCore.gc
homogeneousCore'_le πŸ“–mathematicalβ€”Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
homogeneousCore'
β€”span_le
Set.image_preimage_subset
homogeneousCore'_mono πŸ“–mathematicalβ€”Monotone
Ideal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
homogeneousCore'
β€”span_mono
Set.image_mono
homogeneousCore_eq_sSup πŸ“–mathematicalβ€”homogeneousCore
SupSet.sSup
HomogeneousIdeal
HomogeneousIdeal.instSupSet
setOf
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal.toIdeal
β€”IsLUB.sSup_eq
IsGreatest.isLUB
GaloisConnection.isGreatest_u
homogeneousCore.gc
homogeneousCore_mono πŸ“–mathematicalβ€”Monotone
Ideal
HomogeneousIdeal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instPartialOrderHomogeneousIdeal
homogeneousCore
β€”homogeneousCore'_mono
homogeneousHull_eq_iSup πŸ“–mathematicalβ€”homogeneousHull
iSup
HomogeneousIdeal
HomogeneousIdeal.instSupSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
GradedRing.toDecomposition
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
span
Set.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidHom.instFunLike
GradedRing.proj
SetLike.coe
Ideal
Submodule.setLike
homogeneous_span
β€”HomogeneousIdeal.ext
homogeneous_span
toIdeal_homogeneousHull_eq_iSup
HomogeneousIdeal.toIdeal_iSup
homogeneousHull_eq_sInf πŸ“–mathematicalβ€”homogeneousHull
InfSet.sInf
HomogeneousIdeal
HomogeneousIdeal.instInfSet
setOf
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal.toIdeal
β€”IsGLB.sInf_eq
IsLeast.isGLB
GaloisConnection.isLeast_l
homogeneousHull.gc
homogeneousHull_mono πŸ“–mathematicalβ€”Monotone
Ideal
HomogeneousIdeal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instPartialOrderHomogeneousIdeal
homogeneousHull
β€”span_mono
homogeneous_span πŸ“–mathematicalSetLike.IsHomogeneousElemIsHomogeneous
span
β€”RingHomSurjective.ids
LinearMap.mem_range
Finsupp.span_eq_range_linearCombination
span.eq_1
Finsupp.linearCombination_apply
Finsupp.sum.eq_1
DirectSum.decompose_sum
DFinsupp.finset_sum_apply
AddSubmonoidClass.coe_finset_sum
sum_mem
smul_eq_mul
mul_homogeneous_element_mem_of_mem
subset_span
isHomogeneous_iff_forall_subset πŸ“–mathematicalβ€”IsHomogeneous
Set
Set.instHasSubset
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.preimage
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidHom.instFunLike
GradedRing.proj
β€”β€”
isHomogeneous_iff_subset_iInter πŸ“–mathematicalβ€”IsHomogeneous
Set
Set.instHasSubset
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.iInter
Set.preimage
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidHom.instFunLike
GradedRing.proj
β€”Set.subset_iInter_iff
le_toIdeal_homogeneousHull πŸ“–mathematicalβ€”Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal.toIdeal
homogeneousHull
β€”AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
sum_mem
subset_span
mem_homogeneousCore_of_homogeneous_of_mem πŸ“–mathematicalSetLike.IsHomogeneousElem
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal
HomogeneousIdeal.setLike
homogeneousCore
β€”subset_span
mul_homogeneous_element_mem_of_mem πŸ“–mathematicalSetLike.IsHomogeneousElem
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidHom.instFunLike
GradedRing.proj
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
Finset.sum_mul
map_sum
AddMonoidHom.instAddMonoidHomClass
sum_mem
SetLike.GradedMul.mul_mem
SetLike.GradedMonoid.toGradedMul
GradedRing.toGradedMonoid
SetLike.coe_mem
GradedRing.proj_apply
DirectSum.decompose_of_mem
DirectSum.coe_of_apply
mul_mem_left
zero_mem
toIdeal_homogeneousCore_le πŸ“–mathematicalβ€”Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal.toIdeal
homogeneousCore
β€”homogeneousCore'_le
toIdeal_homogeneousHull_eq_iSup πŸ“–mathematicalβ€”HomogeneousIdeal.toIdeal
homogeneousHull
iSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
Set.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidHom.instFunLike
GradedRing.proj
SetLike.coe
Submodule.setLike
β€”span_iUnion
Set.ext
Set.image_congr

Ideal.IsHomogeneous

Theorems

NameKindAssumesProvesValidatesDepends On
bot πŸ“–mathematicalβ€”Ideal.IsHomogeneous
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”DirectSum.decompose_zero
DirectSum.zero_apply
Ideal.zero_mem
iInf πŸ“–mathematicalIdeal.IsHomogeneousiInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
iInfβ‚‚ πŸ“–mathematicalIdeal.IsHomogeneousiInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”iInf
iSup πŸ“–mathematicalIdeal.IsHomogeneousiSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”GradedRing.toGradedMonoid
Set.image_iUnion
Ideal.span_iUnion
iSupβ‚‚ πŸ“–mathematicalIdeal.IsHomogeneousiSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”iSup
iff_eq πŸ“–mathematicalβ€”Ideal.IsHomogeneous
HomogeneousIdeal.toIdeal
Ideal.homogeneousCore
β€”toIdeal_homogeneousCore_eq_self
HomogeneousSubmodule.is_homogeneous'
iff_exists πŸ“–mathematicalβ€”Ideal.IsHomogeneous
Ideal.span
Set.image
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
SetLike.homogeneousSubmonoid
GradedRing.toGradedMonoid
β€”GradedRing.toGradedMonoid
iff_eq
GaloisConnection.exists_eq_l
GaloisConnection.compose
Set.image_preimage
GaloisInsertion.gc
inf πŸ“–mathematicalIdeal.IsHomogeneousIdeal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
mem_iff πŸ“–mathematicalIdeal.IsHomogeneousIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.instDFunLike
Equiv
DirectSum
AddSubmonoidClass.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
DirectSum.decompose
GradedRing.toDecomposition
β€”DirectSum.AddSubmonoidClass.IsHomogeneous.mem_iff
Submodule.addSubmonoidClass
mul πŸ“–mathematicalIdeal.IsHomogeneous
CommSemiring.toSemiring
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
β€”IsScalarTower.right
GradedRing.toGradedMonoid
iff_exists
IsScalarTower.left
Ideal.span_mul_span'
Ideal.instIsTwoSided
Set.image_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
sInf πŸ“–mathematicalIdeal.IsHomogeneousInfSet.sInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”sInf_eq_iInf
iInfβ‚‚
sSup πŸ“–mathematicalIdeal.IsHomogeneousSupSet.sSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”sSup_eq_iSup
iSupβ‚‚
sup πŸ“–mathematicalIdeal.IsHomogeneousIdeal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”GradedRing.toGradedMonoid
iff_exists
Set.image_union
Submodule.span_union
toIdeal_homogeneousCore_eq_self πŸ“–mathematicalIdeal.IsHomogeneousHomogeneousIdeal.toIdeal
Ideal.homogeneousCore
β€”le_antisymm
Ideal.homogeneousCore'_le
AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
Ideal.sum_mem
Ideal.subset_span
SetLike.isHomogeneousElem_coe
toIdeal_homogeneousHull_eq_self πŸ“–mathematicalIdeal.IsHomogeneousHomogeneousIdeal.toIdeal
Ideal.homogeneousHull
β€”le_antisymm
Ideal.span_le
Subtype.prop
Ideal.le_toIdeal_homogeneousHull
top πŸ“–mathematicalβ€”Ideal.IsHomogeneous
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”

Ideal.homogeneousCore

Definitions

NameCategoryTheorems
gi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
gc πŸ“–mathematicalβ€”GaloisConnection
HomogeneousIdeal
Ideal
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal.toIdeal
Ideal.homogeneousCore
β€”Ideal.homogeneousCore_mono
HomogeneousIdeal.toIdeal_homogeneousCore_eq_self
le_trans
Ideal.homogeneousCore'_le

Ideal.homogeneousHull

Definitions

NameCategoryTheorems
gi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
gc πŸ“–mathematicalβ€”GaloisConnection
Ideal
HomogeneousIdeal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instPartialOrderHomogeneousIdeal
Ideal.homogeneousHull
HomogeneousIdeal.toIdeal
β€”le_trans
Ideal.le_toIdeal_homogeneousHull
Ideal.homogeneousHull_mono
HomogeneousIdeal.homogeneousHull_toIdeal_eq_self

(root)

Definitions

NameCategoryTheorems
HomogeneousIdeal πŸ“–CompOp
59 mathmath: ProjectiveSpectrum.mem_basicOpen, HomogeneousIdeal.toIdeal_mul, ProjectiveSpectrum.subset_zeroLocus_vanishingIdeal, ProjectiveSpectrum.gc_homogeneousIdeal, ProjectiveSpectrum.zeroLocus_mul_homogeneousIdeal, ProjectiveSpectrum.vanishingIdeal_iUnion, HomogeneousIdeal.toIdeal_add, HomogeneousIdeal.toIdeal_iInf, ProjectiveSpectrum.sup_vanishingIdeal_le, ProjectiveSpectrum.mem_vanishingIdeal, HomogeneousIdeal.eq_bot_iff, HomogeneousIdeal.mem_irrelevant_of_mem, HomogeneousIdeal.coe_bot, HomogeneousIdeal.toIdeal_bot, HomogeneousIdeal.toIdeal_iSupβ‚‚, AlgebraicGeometry.Proj.mem_basicOpen, ProjectiveSpectrum.not_irrelevant_le, HomogeneousIdeal.coe_inf, ProjectiveSpectrum.subset_zeroLocus_iff_subset_vanishingIdeal, Ideal.homogeneousHull.gc, ProjectiveSpectrum.as_ideal_le_as_ideal, HomogeneousIdeal.toIdeal_sSup, ProjectiveSpectrum.as_ideal_lt_as_ideal, HomogeneousIdeal.irrelevant_le, ProjectiveSpectrum.mem_zeroLocus, ProjectiveSpectrum.gc_set, HomogeneousIdeal.mem_irrelevant_iff, Ideal.homogeneousHull_eq_iSup, HomogeneousIdeal.toIdeal_injective, HomogeneousIdeal.toIdeal_sInf, Ideal.homogeneousHull_mono, HomogeneousIdeal.toIdeal_top, ProjectiveSpectrum.vanishingIdeal_anti_mono, ProjectiveSpectrum.homogeneousIdeal_le_vanishingIdeal_zeroLocus, AlgebraicGeometry.ProjectiveSpectrum.Proj.mk_mem_toSpec_base_apply, HomogeneousIdeal.coe_sup, HomogeneousIdeal.toIdeal_sup, ProjectiveSpectrum.zeroLocus_vanishingIdeal_eq_closure, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.mk_mem_carrier, HomogeneousIdeal.coe_top, HomogeneousIdeal.toIdeal_iInfβ‚‚, ProjectiveSpectrum.zeroLocus_sup_homogeneousIdeal, AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.relevant, ProjectiveSpectrum.zeroLocus_iSup_homogeneousIdeal, ProjectiveSpectrum.mem_compl_zeroLocus_iff_notMem, ProjectiveSpectrum.subset_vanishingIdeal_zeroLocus, ProjectiveSpectrum.mem_coe_basicOpen, Ideal.homogeneousCore_eq_sSup, Ideal.mem_homogeneousCore_of_homogeneous_of_mem, Ideal.homogeneousCore_mono, HomogeneousIdeal.eq_top_iff, Ideal.homogeneousHull_eq_sInf, HomogeneousIdeal.toIdeal_inf, ProjectiveSpectrum.coe_vanishingIdeal, HomogeneousIdeal.toIdeal_iSup, HomogeneousIdeal.mem_iff, ProjectiveSpectrum.vanishingIdeal_union, Ideal.homogeneousCore.gc, ProjectiveSpectrum.vanishingIdeal_univ
instMulHomogeneousIdeal πŸ“–CompOp
2 mathmath: HomogeneousIdeal.toIdeal_mul, ProjectiveSpectrum.zeroLocus_mul_homogeneousIdeal
instPartialOrderHomogeneousIdeal πŸ“–CompOp
13 mathmath: ProjectiveSpectrum.gc_homogeneousIdeal, ProjectiveSpectrum.sup_vanishingIdeal_le, ProjectiveSpectrum.not_irrelevant_le, Ideal.homogeneousHull.gc, ProjectiveSpectrum.as_ideal_le_as_ideal, ProjectiveSpectrum.as_ideal_lt_as_ideal, HomogeneousIdeal.irrelevant_le, Ideal.homogeneousHull_mono, ProjectiveSpectrum.vanishingIdeal_anti_mono, ProjectiveSpectrum.homogeneousIdeal_le_vanishingIdeal_zeroLocus, AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier.relevant, Ideal.homogeneousCore_mono, Ideal.homogeneousCore.gc

---

← Back to Index