Documentation Verification Report

Radical

πŸ“ Source: Mathlib/RingTheory/GradedAlgebra/Radical.lean

Statistics

MetricCount
Definitionsradical
1
Theoremscoe_radical, isPrime_iff, isPrime_of_homogeneous_mem_or_mem, radical, radical_eq, homogeneousCore
6
Total7

HomogeneousIdeal

Definitions

NameCategoryTheorems
radical πŸ“–CompOp
1 mathmath: coe_radical

Theorems

NameKindAssumesProvesValidatesDepends On
coe_radical πŸ“–mathematicalβ€”toIdeal
Ring.toSemiring
CommRing.toRing
LinearOrder.toDecidableEq
AddCommMonoid.toAddMonoid
radical
Ideal.radical
CommRing.toCommSemiring
β€”β€”

Ideal.IsHomogeneous

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime_iff πŸ“–mathematicalIdeal.IsHomogeneous
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearOrder.toDecidableEq
AddCommMonoid.toAddMonoid
Ideal.IsPrime
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.IsPrime.ne_top
Ideal.IsPrime.mem_or_mem
isPrime_of_homogeneous_mem_or_mem
isPrime_of_homogeneous_mem_or_mem πŸ“–mathematicalIdeal.IsHomogeneous
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearOrder.toDecidableEq
AddCommMonoid.toAddMonoid
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.IsPrimeβ€”Finset.filter_nonempty_iff
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
Ideal.sum_mem
Finset.max'_mem
Finset.mem_of_mem_filter
Finset.sum_congr
SetLike.GradedMonoid.toGradedMul
GradedRing.toGradedMonoid
DirectSum.decompose_mul
DirectSum.coe_mul_apply
Finset.add_sum_erase
eq_sub_of_add_eq
Ideal.sub_mem
Ne.le_iff_lt
add_left_cancel
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
le_or_lt_of_add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Eq.ge
lt_irrefl
Finset.max'_lt_iff
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
Ideal.mul_mem_left
Finset.mem_filter
SetLike.coe_mem
radical πŸ“–mathematicalIdeal.IsHomogeneous
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearOrder.toDecidableEq
AddCommMonoid.toAddMonoid
Ideal.radicalβ€”radical_eq
sInf
radical_eq πŸ“–mathematicalIdeal.IsHomogeneous
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearOrder.toDecidableEq
AddCommMonoid.toAddMonoid
Ideal.radical
InfSet.sInf
Ideal
Ring.toSemiring
CommRing.toRing
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
setOf
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal.IsPrime
β€”Ideal.radical_eq_sInf
le_antisymm
sInf_le_sInf
sInf_le_sInf_of_isCoinitialFor
HomogeneousIdeal.isHomogeneous
Eq.trans_le
toIdeal_homogeneousCore_eq_self
Ideal.homogeneousCore_mono
Ideal.IsPrime.homogeneousCore
Ideal.toIdeal_homogeneousCore_le

Ideal.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
homogeneousCore πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
HomogeneousIdeal.toIdeal
LinearOrder.toDecidableEq
AddCommMonoid.toAddMonoid
Ideal.homogeneousCore
β€”Ideal.IsHomogeneous.isPrime_of_homogeneous_mem_or_mem
HomogeneousIdeal.isHomogeneous
ne_top_of_le_ne_top
ne_top
Ideal.toIdeal_homogeneousCore_le
mem_or_mem
Ideal.mem_homogeneousCore_of_homogeneous_of_mem

---

← Back to Index