Documentation Verification Report

Grassmannian

πŸ“ Source: Mathlib/RingTheory/Grassmannian.lean

Statistics

MetricCount
DefinitionsGrassmannian, instCoeOutSubmodule, toSubmodule, «termG(_,_;_)»»)
4
Theoremsext, ext_iff, finite_quotient, projective_quotient, rankAtStalk_eq
5
Total9

Module

Definitions

NameCategoryTheorems
Grassmannian πŸ“–CompDataβ€”

Module.Grassmannian

Definitions

NameCategoryTheorems
instCoeOutSubmodule πŸ“–CompOpβ€”
toSubmodule πŸ“–CompOp
4 mathmath: rankAtStalk_eq, finite_quotient, projective_quotient, ext_iff
Β«termG(_,_;_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”toSubmoduleβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toSubmoduleβ€”ext
finite_quotient πŸ“–mathematicalβ€”Module.Finite
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
toSubmodule
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”β€”
projective_quotient πŸ“–mathematicalβ€”Module.Projective
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
toSubmodule
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”β€”
rankAtStalk_eq πŸ“–mathematicalβ€”Module.rankAtStalk
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
toSubmodule
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”β€”

---

← Back to Index