Documentation Verification Report

Multiplication

πŸ“ Source: Mathlib/RingTheory/HahnSeries/Multiplication.lean

Statistics

MetricCount
DefinitionsHahnModule, instAddCommGroup, instAddCommMonoid, instBaseModule, instBaseSMul, instBaseSMulZeroClass, instDistribSMul, instModule, instSMul, instSMulZeroClass, instZero, of, rec, C, embDomainAlgHom, embDomainRingHom, instAddCommGroupWithOne, instAddCommMonoidWithOne, instAlgebra, instCommRing, instCommSemiring, instDistrib, instIntCast, instMul, instNNRatCast, instNatCast, instNonAssocRing, instNonAssocSemiring, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocRing, instNonUnitalNonAssocSemiring, instNonUnitalRing, instNonUnitalSemiring, instOne, instRatCast, instRing, instSemiring, orderTopSubOnePos
39
TheoremsSMulCommClass, add_smul, coeff_single_smul_vadd, coeff_single_zero_smul, coeff_smul, coeff_smul_left, coeff_smul_order_add_order, coeff_smul_right, ext, ext_iff, instIsScalarTowerHahnSeries, instIsScalarTowerHahnSeries_1, instIsTorsionFree, of_add, of_smul, of_sub, of_symm_add, of_symm_smul, of_symm_sub, of_symm_zero, of_zero, one_smul', orderTop_vAdd_le_orderTop_smul, single_zero_smul_eq_smul, smul_add, support_smul_subset_vadd_support, support_smul_subset_vadd_support', zero_smul', C_apply, C_eq_algebraMap, C_injective, C_mul_eq_smul, C_ne_zero, C_one, C_zero, algebraMap_apply, coeff_mul, coeff_mul_left', coeff_mul_order_add_order, coeff_mul_right', coeff_mul_single, coeff_mul_single_add, coeff_mul_single_zero, coeff_one, coeff_single_mul, coeff_single_mul_add, coeff_single_zero_mul, embDomainAlgHom_apply_coeff, embDomainRingHom_C, embDomainRingHom_apply, embDomain_mul, embDomain_one, instIsCancelMulZeroOfIsCancelAdd, instIsDomainOfIsCancelAdd, instNoZeroDivisors, instNontrivialSubalgebra, leadingCoeff_mul, leadingCoeff_mul_of_ne_zero, leadingCoeff_mul_of_nonzero, leadingCoeff_one, map_C, map_mul, map_one, mem_orderTopSubOnePos_iff, of_symm_smul_of_eq_mul, orderTop_add_le_mul, orderTop_mul, orderTop_mul_of_ne_zero, orderTop_mul_of_nonzero, orderTop_nsmul_le_orderTop_pow, orderTop_one, orderTop_self_sub_one_pos_iff, orderTop_sub_pos, order_C, order_mul, order_mul_of_ne_zero, order_mul_of_nonzero, order_one, order_pow, order_single_mul_of_isRegular, single_mul_single, single_pow, single_zero_intCast, single_zero_mul_eq_smul, single_zero_natCast, single_zero_nnratCast, single_zero_ofNat, single_zero_one, single_zero_ratCast, support_mul_subset, support_mul_subset_add_support, support_one
92
Total131

HahnModule

Definitions

NameCategoryTheorems
instAddCommGroup πŸ“–CompOp
2 mathmath: of_sub, of_symm_sub
instAddCommMonoid πŸ“–CompOp
21 mathmath: smul_add, VertexOperator.of_coeff_apply_coeff, HVertexOperator.coeff_isPWOsupport, add_smul, VertexOperator.ncoeff_apply, HVertexOperator.of_coeff_coeff, HVertexOperator.coeff_inj_iff, of_symm_add, HVertexOperator.coeff_inj, VertexOperator.ext_iff, HVertexOperator.ext_iff, of_add, VertexOperator.ncoeff_of_coeff, HVertexOperator.compHahnSeries_coeff, HVertexOperator.coeff_comp, HVertexOperator.coeff_apply_apply, HVertexOperator.of_coeff_apply, instIsTorsionFree, VertexOperator.coeff_eq_ncoeff, HVertexOperator.comp_apply, HVertexOperator.coeff_of_coeff
instBaseModule πŸ“–CompOp
16 mathmath: VertexOperator.of_coeff_apply_coeff, HVertexOperator.coeff_isPWOsupport, VertexOperator.ncoeff_apply, HVertexOperator.of_coeff_coeff, HVertexOperator.coeff_inj_iff, HVertexOperator.coeff_inj, VertexOperator.ext_iff, HVertexOperator.ext_iff, VertexOperator.ncoeff_of_coeff, HVertexOperator.compHahnSeries_coeff, HVertexOperator.coeff_comp, HVertexOperator.coeff_apply_apply, HVertexOperator.of_coeff_apply, VertexOperator.coeff_eq_ncoeff, HVertexOperator.comp_apply, HVertexOperator.coeff_of_coeff
instBaseSMul πŸ“–CompOp
2 mathmath: instIsScalarTowerHahnSeries_1, SMulCommClass
instBaseSMulZeroClass πŸ“–CompOp
3 mathmath: of_symm_smul, of_smul, single_zero_smul_eq_smul
instDistribSMul πŸ“–CompOpβ€”
instModule πŸ“–CompOp
1 mathmath: instIsTorsionFree
instSMul πŸ“–CompOp
21 mathmath: support_smul_subset_vadd_support', smul_add, coeff_single_smul_vadd, add_smul, HahnSeries.SummableFamily.hsum_smul_module, HahnSeries.SummableFamily.smul_apply, HahnSeries.SummableFamily.smul_hsum, HahnSeries.of_symm_smul_of_eq_mul, HahnSeries.SummableFamily.smul_toFun, coeff_smul_order_add_order, instIsScalarTowerHahnSeries_1, SMulCommClass, coeff_smul, coeff_single_zero_smul, orderTop_vAdd_le_orderTop_smul, zero_smul', one_smul', support_smul_subset_vadd_support, coeff_smul_left, coeff_smul_right, single_zero_smul_eq_smul
instSMulZeroClass πŸ“–CompOpβ€”
instZero πŸ“–CompOp
6 mathmath: of_symm_smul, zero_smul', of_smul, of_symm_zero, of_zero, single_zero_smul_eq_smul
of πŸ“–CompOp
27 mathmath: support_smul_subset_vadd_support', coeff_single_smul_vadd, VertexOperator.of_coeff_apply_coeff, HVertexOperator.coeff_isPWOsupport, HahnSeries.SummableFamily.hsum_smul_module, HahnSeries.SummableFamily.smul_apply, HahnSeries.SummableFamily.smul_hsum, HahnSeries.of_symm_smul_of_eq_mul, HahnSeries.SummableFamily.smul_toFun, coeff_smul_order_add_order, of_symm_smul, ext_iff, of_symm_add, coeff_smul, coeff_single_zero_smul, orderTop_vAdd_le_orderTop_smul, of_smul, of_sub, of_add, support_smul_subset_vadd_support, of_symm_zero, of_zero, HVertexOperator.coeff_apply_apply, HVertexOperator.of_coeff_apply, coeff_smul_left, HVertexOperator.comp_apply, of_symm_sub
rec πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
SMulCommClass πŸ“–mathematicalβ€”SMulCommClass
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instBaseSMul
instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
β€”single_zero_smul_eq_smul
mul_comm
add_smul πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
HahnSeries
HahnModule
instSMul
HahnSeries.instAdd
instAddCommMonoid
β€”ext
Set.IsPWO.union
HahnSeries.isPWO_support
coeff_smul_left
Mathlib.Tactic.Contrapose.contraposeβ‚‚
add_zero
HahnSeries.coeff_add'
of_symm_add
Finset.sum_congr
Set.subset_union_right
Set.subset_union_left
Finset.sum_add_distrib
coeff_single_smul_vadd πŸ“–mathematicalβ€”HahnSeries.coeff
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
HVAdd.hVAdd
instHVAdd
β€”map_zero
ZeroHom.zeroHomClass
HahnSeries.isPWO_support
HahnSeries.support_zero
Finset.sum_congr
Finset.VAddAntidiagonal.congr_simp
zero_smul
Finset.sum_const_zero
HahnSeries.support_single_of_ne
smul_zero
Finset.ext
IsCancelVAdd.left_cancel
instIsCancelVAddOfIsOrderedCancelVAdd
Finset.sum_empty
Finset.sum_singleton
HahnSeries.coeff_single_same
coeff_single_zero_smul πŸ“–mathematicalβ€”HahnSeries.coeff
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
β€”zero_vadd
coeff_single_smul_vadd
coeff_smul πŸ“–mathematicalβ€”HahnSeries.coeff
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
Finset.sum
Finset.VAddAntidiagonal
HahnSeries.support
HahnSeries.isPWO_support
β€”β€”
coeff_smul_left πŸ“–mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
HahnSeries.support
HahnSeries.coeff
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
Finset.sum
Finset.VAddAntidiagonal
HahnSeries.isPWO_support
β€”HahnSeries.isPWO_support
coeff_smul
Finset.sum_subset_zero_on_sdiff
Finset.vaddAntidiagonal_mono_left
zero_smul
coeff_smul_order_add_order πŸ“–mathematicalβ€”HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
HahnSeries.order
HahnSeries.leadingCoeff
β€”instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
zero_smul'
HahnSeries.order_zero
zero_add
HahnSeries.leadingCoeff_zero
zero_smul
add_zero
HahnSeries.isPWO_support
HahnSeries.support_zero
Finset.sum_congr
Finset.VAddAntidiagonal.congr_simp
smul_zero
Finset.sum_const_zero
HahnSeries.isWF_support
HahnSeries.support_nonempty_iff
HahnSeries.order_of_ne
coeff_smul
HahnSeries.orderTop_ne_top
HahnSeries.leadingCoeff_of_ne_zero
vadd_eq_add
Set.IsWF.isPWO
Finset.vaddAntidiagonal_min_vadd_min
Finset.sum_singleton
WithTop.untop.congr_simp
coeff_smul_right πŸ“–mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
HahnSeries.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
HahnSeries.coeff
instSMul
Finset.sum
Finset.VAddAntidiagonal
HahnSeries.isPWO_support
β€”HahnSeries.isPWO_support
coeff_smul
Finset.sum_subset_zero_on_sdiff
Finset.vaddAntidiagonal_mono_right
smul_zero
ext πŸ“–β€”HahnSeries.coeff
DFunLike.coe
Equiv
HahnModule
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
β€”β€”Equiv.injective
ext_iff πŸ“–mathematicalβ€”HahnSeries.coeff
DFunLike.coe
Equiv
HahnModule
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
β€”ext
instIsScalarTowerHahnSeries πŸ“–mathematicalβ€”IsScalarTower
HahnSeries
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries.instSMul
SMulWithZero.toSMulZeroClass
β€”HahnSeries.ext
smul_assoc
instIsScalarTowerHahnSeries_1 πŸ“–mathematicalβ€”IsScalarTower
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
HahnSeries.instSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toDistribSMul
instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
instBaseSMul
β€”HahnSeries.single_zero_mul_eq_smul
single_zero_smul_eq_smul
instIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
HahnModule
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
HahnSeries.instSemiring
instAddCommMonoid
instModule
AddMonoid.toAddAction
AddCommMonoid.toAddMonoid
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
β€”Module.IsTorsionFree.of_smul_eq_zero
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
HahnSeries.instNontrivialOfNonempty
Zero.instNonempty
IsDomain.toNontrivial
Mathlib.Tactic.Contrapose.contrapose₁
ext_iff
coeff_smul_order_add_order
IsDomain.toIsCancelMulZero
of_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnSeries
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnModule
EquivLike.toFunLike
Equiv.instEquivLike
of
HahnSeries.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
β€”β€”
of_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnSeries
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnModule
SMulZeroClass.toSMul
EquivLike.toFunLike
Equiv.instEquivLike
of
HahnSeries.instSMul
instZero
instBaseSMulZeroClass
β€”β€”
of_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnModule
EquivLike.toFunLike
Equiv.instEquivLike
of
HahnSeries.instSub
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
instAddCommGroup
β€”β€”
of_symm_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
HahnSeries.instAdd
β€”β€”
of_symm_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instZero
instBaseSMulZeroClass
HahnSeries.instSMul
β€”β€”
of_symm_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnModule
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroup
HahnSeries.instSub
β€”β€”
of_symm_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnModule
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instZero
HahnSeries.instZero
β€”β€”
of_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnSeries
HahnModule
EquivLike.toFunLike
Equiv.instEquivLike
of
HahnSeries.instZero
instZero
β€”β€”
one_smul' πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulActionWithZero.toSMulWithZero
instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
HahnSeries.instOne
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”ext
coeff_single_zero_smul
one_smul
orderTop_vAdd_le_orderTop_smul πŸ“–mathematicalWithTop.some
HVAdd.hVAdd
instHVAdd
WithTop
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
HahnSeries.orderTop
MulZeroClass.toZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
β€”HahnSeries.orderTop_zero
zero_smul'
smul_zero
HahnSeries.isWF_support
HahnSeries.support_nonempty_iff
HahnSeries.orderTop_of_ne_zero
Set.IsWF.vadd
IsOrderedCancelVAdd.toIsOrderedVAdd
Set.Nonempty.vadd
Set.IsWF.min_vadd
OrderTop.le_top
WithTop.coe_le_coe
Set.IsWF.min_le_min_of_subset
support_smul_subset_vadd_support
single_zero_smul_eq_smul πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
DFunLike.coe
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
instZero
instBaseSMulZeroClass
β€”ext
coeff_single_zero_smul
smul_add πŸ“–mathematicalβ€”HahnSeries
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
instSMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
β€”ext
Set.IsPWO.union
HahnSeries.isPWO_support
coeff_smul_right
Mathlib.Tactic.Contrapose.contraposeβ‚‚
add_zero
of_symm_add
Finset.sum_congr
Set.subset_union_right
Set.subset_union_left
smul_add
Finset.sum_add_distrib
support_smul_subset_vadd_support πŸ“–mathematicalβ€”Set
Set.instHasSubset
HahnSeries.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
HVAdd.hVAdd
instHVAdd
Set.vadd
β€”support_smul_subset_vadd_support'
support_smul_subset_vadd_support' πŸ“–mathematicalβ€”Set
Set.instHasSubset
HahnSeries.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
HahnModule
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
of
instSMul
HVAdd.hVAdd
instHVAdd
Set.vadd
β€”Set.Subset.trans
HahnSeries.isPWO_support
Mathlib.Tactic.Contrapose.contrapose₁
Finset.sum_congr
Finset.support_vaddAntidiagonal_subset_vadd
zero_smul' πŸ“–mathematicalβ€”HahnSeries
HahnModule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
instSMul
HahnSeries.instZero
instZero
β€”ext
HahnSeries.isPWO_support
HahnSeries.support_zero
Finset.sum_congr
Finset.VAddAntidiagonal.congr_simp
zero_smul
Finset.sum_const_zero

HahnSeries

Definitions

NameCategoryTheorems
C πŸ“–CompOp
14 mathmath: C_injective, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, map_C, LaurentSeries.algebraMap_apply, embDomainRingHom_C, algebraMap_apply, C_eq_algebraMap, C_zero, PowerSeries.coe_C, C_mul_eq_smul, C_one, order_C, C_apply, ofPowerSeries_C
embDomainAlgHom πŸ“–CompOp
1 mathmath: embDomainAlgHom_apply_coeff
embDomainRingHom πŸ“–CompOp
2 mathmath: embDomainRingHom_apply, embDomainRingHom_C
instAddCommGroupWithOne πŸ“–CompOpβ€”
instAddCommMonoidWithOne πŸ“–CompOpβ€”
instAlgebra πŸ“–CompOp
14 mathmath: PowerSeries.heval_C, PowerSeries.coeff_heval, instNontrivialSubalgebra, PowerSeries.heval_apply, algebraMap_apply, C_eq_algebraMap, embDomainAlgHom_apply_coeff, toPowerSeriesAlg_apply, toPowerSeriesAlg_symm_apply_coeff, ofPowerSeriesAlg_apply_coeff, PowerSeries.heval_X, PowerSeries.heval_unit, PowerSeries.coeff_heval_zero, PowerSeries.heval_mul
instCommRing πŸ“–CompOp
2 mathmath: LaurentSeries.powerSeriesEquivSubring_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply
instCommSemiring πŸ“–CompOp
2 mathmath: LaurentSeries.of_powerSeries_localization, LaurentSeries.instIsFractionRingPowerSeries
instDistrib πŸ“–CompOpβ€”
instIntCast πŸ“–CompOp
1 mathmath: single_zero_intCast
instMul πŸ“–CompOp
62 mathmath: instNoZeroDivisorsFinsuppNat, SummableFamily.mul_toFun, leadingCoeff_mul, LaurentSeries.LaurentSeriesRingEquiv_def, coeff_single_mul_add, coeff_mul, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, single_mul_single, single_zero_mul_eq_smul, order_mul, coeff_mul_left', toMvPowerSeries_symm_apply_coeff, instIsCancelMulZeroOfIsCancelAdd, orderTop_mul_of_nonzero, one_minus_single_neg_mul, PowerSeries.coe_mul, order_single_mul_of_isRegular, coeff_single_zero_mul, map_mul, of_symm_smul_of_eq_mul, order_mul_of_nonzero, instNoZeroDivisors, leadingCoeff_mul_of_ne_zero, coeff_mul_order_add_order, orderTop_mul_of_ne_zero, unit_aux, LaurentSeries.coe_X_compare, cardSupp_mul_single_le, cardSupp_single_mul_le, LaurentSeries.exists_powerSeries_of_memIntegers, orderTop_mul, coeff_toPowerSeries, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, coeff_toPowerSeries_symm, LaurentSeries.powerSeriesRingEquiv_coe_apply, orderTop_add_le_mul, SummableFamily.one_sub_self_mul_hsum_powers, support_mul_subset_add_support, coeff_toMvPowerSeries_symm, embDomain_mul, inv_def, coeff_mul_right', C_mul_eq_smul, coeff_toMvPowerSeries, coeff_mul_single, SummableFamily.hsum_smul, SummableFamily.hsum_mul, support_mul_subset, leadingCoeff_mul_of_nonzero, ofPowerSeries_apply, toMvPowerSeries_apply, LaurentSeries.ratfuncAdicComplRingEquiv_apply, coeff_mul_single_add, coeff_mul_single_zero, order_mul_of_ne_zero, LaurentSeries.mem_integers_of_powerSeries, toPowerSeries_apply, PowerSeries.heval_mul, toPowerSeries_symm_apply_coeff, coeff_single_mul, cardSupp_mul_le
instNNRatCast πŸ“–CompOp
2 mathmath: single_zero_ofScientific, single_zero_nnratCast
instNatCast πŸ“–CompOp
1 mathmath: single_zero_natCast
instNonAssocRing πŸ“–CompOpβ€”
instNonAssocSemiring πŸ“–CompOp
50 mathmath: C_injective, LaurentSeries.LaurentSeriesRingEquiv_def, ofPowerSeries_X_pow, PowerSeries.coe_add, SummableFamily.lsum_apply, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, embDomainRingHom_apply, PowerSeries.coeff_coe, LaurentSeries.coe_algebraMap, RatFunc.coe_coe, PowerSeries.coe_smul, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, map_C, LaurentSeries.val_le_one_iff_eq_coe, PowerSeries.coe_mul, PowerSeries.coe_sub, LaurentSeries.algebraMap_apply, embDomainRingHom_C, algebraMap_apply, ofPowerSeries_apply_coeff, ofPowerSeries_X, LaurentSeries.coe_X_compare, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, C_zero, PowerSeries.coe_zero, LaurentSeries.exists_powerSeries_of_memIntegers, PowerSeries.coe_C, PowerSeries.coe_neg, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, LaurentSeries.powerSeries_ext_subring, LaurentSeries.powerSeriesRingEquiv_coe_apply, LaurentSeries.powerSeriesEquivSubring_apply, Polynomial.algebraMap_hahnSeries_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, PowerSeries.coe_X, C_mul_eq_smul, C_one, order_C, ofPowerSeries_apply, PowerSeries.coe_one, ofPowerSeries_injective, C_apply, ofPowerSeries_C, PowerSeries.coe_pow, LaurentSeries.mem_integers_of_powerSeries, algebraMap_apply', LaurentSeries.X_order_mul_powerSeriesPart, LaurentSeries.coeff_coe_powerSeries, LaurentSeries.valuation_X_pow
instNonUnitalCommRing πŸ“–CompOpβ€”
instNonUnitalCommSemiring πŸ“–CompOpβ€”
instNonUnitalNonAssocRing πŸ“–CompOpβ€”
instNonUnitalNonAssocSemiring πŸ“–CompOpβ€”
instNonUnitalRing πŸ“–CompOpβ€”
instNonUnitalSemiring πŸ“–CompOpβ€”
instOne πŸ“–CompOp
26 mathmath: PowerSeries.heval_C, SummableFamily.powers_zero, orderTop_sub_pos, SummableFamily.powers_of_not_orderTop_pos, orderTop_one, cardSupp_one_le, one_minus_single_neg_mul, embDomain_one, SummableFamily.embDomain_succ_smul_powers, map_one, SummableFamily.powerSeriesFamily_hsum_zero, unit_aux, coeff_one, single_zero_one, SummableFamily.one_sub_self_mul_hsum_powers, inv_def, leadingCoeff_one, HahnModule.one_smul', orderTop_self_sub_one_pos_iff, C_one, order_one, PowerSeries.coe_one, coeff_toOrderTopSubOnePos_pow, mem_orderTopSubOnePos_iff, support_one, cardSupp_one
instRatCast πŸ“–CompOp
1 mathmath: single_zero_ratCast
instRing πŸ“–CompOp
25 mathmath: LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, LaurentSeries.valuation_single_zpow, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.val_le_one_iff_eq_coe, mem_cardSuppLTSubring, addVal_le_of_coeff_ne_zero, LaurentSeries.exists_ratFunc_val_lt, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, addVal_apply_of_ne, LaurentSeries.valuation_LaurentSeries_equal_extension, LaurentSeries.powerSeries_ext_subring, LaurentSeries.powerSeriesEquivSubring_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, LaurentSeries.instLaurentSeriesComplete, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.valuation_compare, LaurentSeries.coe_range_dense, LaurentSeries.comparePkg_eq_extension, LaurentSeries.valuation_def, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, LaurentSeries.uniformContinuous_coeff, addVal_apply, LaurentSeries.exists_ratFunc_eq_v, LaurentSeries.valuation_X_pow
instSemiring πŸ“–CompOp
60 mathmath: RatFunc.instFaithfulSMulPolynomialLaurentSeries, PowerSeries.heval_C, instIsStrictOrderedRingLexOfIsDomain, single_pow, PowerSeries.coeff_heval, SummableFamily.binomialFamily_apply_of_orderTop_nonpos, SummableFamily.lsum_apply, RatFunc.coe_X, LaurentSeries.coe_algebraMap, RatFunc.coe_coe, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, SummableFamily.coe_powers, SummableFamily.co_support_zero, isUnit_of_isUnit_leadingCoeff_AddUnitOrder, instNontrivialSubalgebra, PowerSeries.heval_apply, LaurentSeries.algebraMap_apply, LaurentSeries.exists_ratFunc_val_lt, SummableFamily.support_pow_subset_closure, algebraMap_apply, C_eq_algebraMap, embDomainAlgHom_apply_coeff, RatFunc.valuation_eq_LaurentSeries_valuation, RatFunc.algebraMap_apply_div, toPowerSeriesAlg_apply, isUnit_iff, toPowerSeriesAlg_symm_apply_coeff, binomial_power, SummableFamily.isPWO_iUnion_support_powers, pow_add, orderTop_nsmul_le_orderTop_pow, LaurentSeries.LaurentSeries_coe, ofPowerSeriesAlg_apply_coeff, PowerSeries.heval_X, SummableFamily.binomialFamily_apply, Polynomial.algebraMap_hahnSeries_apply, Polynomial.algebraMap_hahnSeries_injective, LaurentSeries.valuation_coe_ratFunc, SummableFamily.powerSeriesFamily_of_orderTop_pos, RatFunc.single_one_eq_pow, SummableFamily.powers_toFun, PowerSeries.heval_unit, LaurentSeries.coe_range_dense, order_pow, isUnit_of_orderTop_pos, instIsOrderedRingLexOfNoZeroDivisors, coeff_toOrderTopSubOnePos_pow, PowerSeries.coeff_heval_zero, instIsDomainOfIsCancelAdd, SummableFamily.powers_of_orderTop_pos, HahnModule.instIsTorsionFree, PowerSeries.coe_pow, PowerSeries.heval_mul, algebraMap_apply', val_toOrderTopSubOnePos_coe, mem_orderTopSubOnePos_iff, val_inv_toOrderTopSubOnePos_coe, LaurentSeries.valuation_X_pow, cardSupp_pow_le
orderTopSubOnePos πŸ“–CompOp
6 mathmath: binomial_power, pow_add, coeff_toOrderTopSubOnePos_pow, val_toOrderTopSubOnePos_coe, mem_orderTopSubOnePos_iff, val_inv_toOrderTopSubOnePos_coe

Theorems

NameKindAssumesProvesValidatesDepends On
C_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instNonAssocSemiring
RingHom.instFunLike
C
ZeroHom
instZero
ZeroHom.funLike
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
C_eq_algebraMap πŸ“–mathematicalβ€”C
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
algebraMap
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiring
instAlgebra
Algebra.id
β€”β€”
C_injective πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
DFunLike.coe
RingHom
instNonAssocSemiring
RingHom.instFunLike
C
β€”ext_iff
coeff_single_same
C_apply
C_mul_eq_smul πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
DFunLike.coe
RingHom
instNonAssocSemiring
RingHom.instFunLike
C
instSMul
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toDistribSMul
β€”single_zero_mul_eq_smul
C_ne_zero πŸ“–β€”β€”β€”β€”C_injective
C_zero
C_one πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instNonAssocSemiring
RingHom.instFunLike
C
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”RingHom.map_one
C_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instNonAssocSemiring
RingHom.instFunLike
C
instZero
β€”RingHom.map_zero
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
instNonAssocSemiring
C
β€”β€”
coeff_mul πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.addAntidiagonal
support
isPWO_support
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coeff_mul_left' πŸ“–mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coeff
HahnSeries
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.addAntidiagonal
isPWO_support
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”HahnModule.coeff_smul_left
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
coeff_mul_order_add_order πŸ“–mathematicalβ€”coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
order
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
leadingCoeff
β€”HahnModule.coeff_smul_order_add_order
coeff_mul_right' πŸ“–mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coeff
HahnSeries
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.addAntidiagonal
isPWO_support
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”HahnModule.coeff_smul_right
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
coeff_mul_single πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
AddCommGroup.toAddCommMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
sub_add_cancel
coeff_mul_single_add
coeff_mul_single_add πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”map_zero
ZeroHom.zeroHomClass
isPWO_support
support_zero
Finset.sum_congr
Finset.addAntidiagonal.congr_simp
MulZeroClass.mul_zero
Finset.sum_const_zero
support_single_of_ne
MulZeroClass.zero_mul
Finset.ext
add_right_cancel
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
Finset.sum_empty
Finset.sum_singleton
coeff_single_same
coeff_mul_single_zero πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”add_zero
coeff_mul_single_add
coeff_one πŸ“–mathematicalβ€”coeff
HahnSeries
instOne
β€”coeff_single
coeff_single_mul πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
AddCommGroup.toAddCommMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
sub_add_cancel
coeff_single_mul_add
coeff_single_mul_add πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
of_symm_smul_of_eq_mul
add_comm
vadd_eq_add
HahnModule.coeff_single_smul_vadd
coeff_single_zero_mul πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”add_zero
coeff_single_mul_add
embDomainAlgHom_apply_coeff πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
Preorder.toLE
PartialOrder.toPreorder
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AlgHom
HahnSeries
instSemiring
instAlgebra
AlgHom.funLike
embDomainAlgHom
Set
Set.instMembership
Set.image
support
β€”β€”
embDomainRingHom_C πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
Preorder.toLE
PartialOrder.toPreorder
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instNonAssocSemiring
RingHom.instFunLike
embDomainRingHom
C
β€”embDomain_single
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
embDomainRingHom_apply πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
Preorder.toLE
PartialOrder.toPreorder
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instNonAssocSemiring
RingHom.instFunLike
embDomainRingHom
embDomain
β€”β€”
embDomain_mul πŸ“–mathematicalDFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderEmbedding
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
embDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
β€”ext
isPWO_support
embDomain_coeff
Finset.sum_map
Finset.sum_congr
Finset.sum_subset
Finset.addAntidiagonal.congr_simp
Mathlib.Tactic.Contrapose.contraposeβ‚‚
support_embDomain_subset
ne_zero_and_ne_zero_of_mul
embDomain_notin_range
support_mul_subset
mem_support
embDomain_one πŸ“–mathematicalDFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
instFunLikeOrderEmbedding
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
embDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
HahnSeries
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”embDomain_single
instIsCancelMulZeroOfIsCancelAdd πŸ“–mathematicalβ€”IsCancelMulZero
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instMul
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
Set.IsWF.mono
Set.IsWF.union
isWF_support
Set.IsWF.min_mem
isPWO_support
coeff_mul
Finset.sum_subset
Finset.subset_union_left
MulZeroClass.mul_zero
Finset.subset_union_right
Finset.sum_eq_sum_iff_single
AddRightCancelSemigroup.toIsRightCancelAdd
IsCancelAdd.toIsLeftCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
add_eq_add_iff_eq_and_eq
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
order_le_of_coeff_ne_zero
Set.IsWF.min_le
mul_right_inj'
Iff.not
coeff_order_eq_zero
MulZeroClass.zero_mul
IsCancelMulZero.toIsRightCancelMulZero
mul_left_inj'
instIsDomainOfIsCancelAdd πŸ“–mathematicalβ€”IsDomain
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
β€”instIsCancelMulZeroOfIsCancelAdd
IsDomain.toIsCancelMulZero
instNontrivialOfNonempty
Zero.instNonempty
IsDomain.toNontrivial
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instMul
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
coeff_mul_order_add_order
instNontrivialSubalgebra πŸ“–mathematicalβ€”Nontrivial
Subalgebra
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instSemiring
instAlgebra
Algebra.id
β€”SetLike.ext_iff
exists_ne
ext_iff
coeff_single_same
algebraMap_apply
C_apply
coeff_single_of_ne
zero_ne_one
NeZero.one
leadingCoeff_mul πŸ“–mathematicalβ€”leadingCoeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”MulZeroClass.zero_mul
leadingCoeff_zero
MulZeroClass.mul_zero
leadingCoeff_mul_of_ne_zero
leadingCoeff_mul_of_ne_zero πŸ“–mathematicalβ€”leadingCoeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”leadingCoeff_eq
order_mul_of_ne_zero
coeff_mul_order_add_order
leadingCoeff_mul_of_nonzero πŸ“–mathematicalβ€”leadingCoeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”leadingCoeff_mul_of_ne_zero
leadingCoeff_one πŸ“–mathematicalβ€”leadingCoeff
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
HahnSeries
instOne
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”leadingCoeff_eq
order_one
coeff_one
map_C πŸ“–mathematicalβ€”map
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
DFunLike.coe
RingHom
HahnSeries
instNonAssocSemiring
RingHom.instFunLike
C
MonoidWithZeroHomClass.toZeroHomClass
NonAssocSemiring.toMulZeroOneClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
β€”ext
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeff_single_same
coeff_single_of_ne
map_zero
map_mul πŸ“–mathematicalβ€”map
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
HahnSeries
instMul
NonUnitalRingHom
NonUnitalRingHom.instFunLike
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
NonUnitalRingHom.instNonUnitalRingHomClass
β€”ext
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
NonUnitalRingHom.instNonUnitalRingHomClass
isPWO_support
map_sum
Finset.sum_congr
map_mul
NonUnitalRingHomClass.toMulHomClass
Finset.sum_subset
map_zero
mul_eq_zero_of_left
mul_eq_zero_of_right
map_one πŸ“–mathematicalβ€”map
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
HahnSeries
instOne
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZeroHom
MonoidWithZeroHom.funLike
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
β€”ZeroHom.zeroHomClass
map_single
MonoidWithZeroHom.map_one
mem_orderTopSubOnePos_iff πŸ“–mathematicalβ€”Units
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
orderTopSubOnePos
WithTop
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
WithTop.zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
orderTop
instSub
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
Units.val
instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
of_symm_smul_of_eq_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HahnModule
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
HahnModule.of
HahnModule.instSMul
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
instMul
β€”instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
orderTop_add_le_mul πŸ“–mathematicalβ€”WithTop
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithTop.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
orderTop
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
β€”smul_eq_mul
HahnModule.orderTop_vAdd_le_orderTop_smul
instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
orderTop_mul πŸ“–mathematicalβ€”orderTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
WithTop
WithTop.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”MulZeroClass.zero_mul
orderTop_zero
MulZeroClass.mul_zero
WithTop.add_top
orderTop_mul_of_ne_zero
orderTop_mul_of_ne_zero πŸ“–mathematicalβ€”orderTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
WithTop
WithTop.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”MulZeroClass.zero_mul
orderTop_zero
MulZeroClass.mul_zero
WithTop.add_top
coeff_mul_order_add_order
order_eq_orderTop_of_ne_zero
WithTop.coe_add
WithTop.coe_eq_coe
le_antisymm
order_le_of_coeff_ne_zero
isWF_support
support_nonempty_iff
order_of_ne
Set.IsWF.add
Set.Nonempty.add
Set.IsWF.min_add
Set.IsWF.min_le_min_of_subset
support_mul_subset
orderTop_mul_of_nonzero πŸ“–mathematicalβ€”orderTop
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
WithTop
WithTop.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”orderTop_mul_of_ne_zero
orderTop_nsmul_le_orderTop_pow πŸ“–mathematicalβ€”WithTop
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoid.toNatSMul
WithTop.addMonoid
AddCommMonoid.toAddMonoid
orderTop
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
HahnSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”zero_smul
pow_zero
orderTop_one
not_nontrivial_iff_subsingleton
NeZero.one
orderTop_of_subsingleton
add_nsmul
pow_add
add_le_add_left
WithTop.addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
one_nsmul
orderTop_add_le_mul
pow_one
le_refl
orderTop_one πŸ“–mathematicalβ€”orderTop
HahnSeries
instOne
WithTop
WithTop.zero
β€”single_zero_one
orderTop_single
one_ne_zero
WithTop.coe_eq_zero
orderTop_self_sub_one_pos_iff πŸ“–mathematicalβ€”WithTop
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithTop.zero
orderTop
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
HahnSeries
instSub
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
leadingCoeff
β€”sub_add_cancel
add_comm
orderTop_one
NeZero.one
orderTop_add_eq_left
leadingCoeff_one
leadingCoeff_add_eq_left
lt_of_le_of_ne
min_self
min_orderTop_le_orderTop_sub
orderTop_sub_ne
orderTop_sub_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
WithTop
WithTop.instPreorder
WithTop.zero
orderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries
instSub
AddCommGroup.toAddGroup
instAdd
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
instOne
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
β€”map_zero
ZeroHom.zeroHomClass
add_zero
sub_self
orderTop_zero
add_sub_cancel_left
orderTop_single
order_C πŸ“–mathematicalβ€”order
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
RingHom
HahnSeries
instNonAssocSemiring
RingHom.instFunLike
C
β€”C_zero
order_zero
order_single
order_mul πŸ“–mathematicalβ€”order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries
instMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”le_antisymm
order_le_of_coeff_ne_zero
coeff_mul_order_add_order
isWF_support
support_nonempty_iff
order_of_ne
mul_ne_zero
instNoZeroDivisors
Set.IsWF.add
Set.Nonempty.add
Set.IsWF.min_add
Set.IsWF.min_le_min_of_subset
support_mul_subset
order_mul_of_ne_zero πŸ“–mathematicalβ€”order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries
instMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”leadingCoeff_zero
MulZeroClass.zero_mul
MulZeroClass.mul_zero
ne_of_eq_of_ne
coeff_mul_order_add_order
le_antisymm
order_le_of_coeff_ne_zero
isWF_support
support_nonempty_iff
leadingCoeff_ne_zero
order_of_ne
ne_zero_of_coeff_ne_zero
Set.IsWF.add
Set.Nonempty.add
Set.IsWF.min_add
Set.IsWF.min_le_min_of_subset
support_mul_subset
order_mul_of_nonzero πŸ“–mathematicalβ€”order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries
instMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”order_mul_of_ne_zero
order_one πŸ“–mathematicalβ€”order
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
HahnSeries
instOne
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”subsingleton_or_nontrivial
instSubsingleton
order_zero
order_single
one_ne_zero
NeZero.one
order_pow πŸ“–mathematicalβ€”order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
AddMonoid.toNatSMul
β€”pow_zero
order_one
zero_nsmul
eq_or_ne
pow_succ
MulZeroClass.mul_zero
order_zero
nsmul_zero
order_mul
isReduced_of_noZeroDivisors
instNoZeroDivisors
succ_nsmul
order_single_mul_of_isRegular πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
HahnSeries
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”subsingleton_or_nontrivial
Subsingleton.eq_zero
instSubsingleton
leadingCoeff_of_single
IsLeftRegular.mul_left_eq_zero_iff
IsRegular.left
leadingCoeff_eq_zero
order_mul_of_ne_zero
order_single
IsRegular.ne_zero
single_mul_single πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”ext
coeff_mul_single_add
coeff_single_same
coeff_single_of_ne
isPWO_support
coeff_mul
Finset.sum_eq_zero
eq_of_mem_support_single
single_pow πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”ext
pow_zero
coeff_one
zero_smul
coeff_single
pow_succ
single_mul_single
succ_nsmul
single_zero_intCast πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
instZero
ZeroHom.funLike
single
instIntCast
β€”β€”
single_zero_mul_eq_smul πŸ“–mathematicalβ€”HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
DFunLike.coe
ZeroHom
instZero
ZeroHom.funLike
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instSMul
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toDistribSMul
β€”ext
coeff_single_zero_mul
single_zero_natCast πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
instZero
ZeroHom.funLike
single
instNatCast
β€”β€”
single_zero_nnratCast πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
instZero
ZeroHom.funLike
single
NNRat.cast
instNNRatCast
β€”β€”
single_zero_ofNat πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
instZero
ZeroHom.funLike
single
β€”β€”
single_zero_one πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
instZero
ZeroHom.funLike
single
instOne
β€”β€”
single_zero_ratCast πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
instZero
ZeroHom.funLike
single
instRatCast
β€”β€”
support_mul_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”instIsOrderedCancelVAddOfIsOrderedAddCancelMonoid
of_symm_smul_of_eq_mul
vadd_eq_add
HahnModule.support_smul_subset_vadd_support
support_mul_subset_add_support πŸ“–mathematicalβ€”Set
Set.instHasSubset
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries
instMul
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”support_mul_subset
support_one πŸ“–mathematicalβ€”support
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
HahnSeries
instOne
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
Set
Set.instSingletonSet
β€”support_single_of_ne
one_ne_zero
NeZero.one

(root)

Definitions

NameCategoryTheorems
HahnModule πŸ“–CompOp
46 mathmath: HahnModule.support_smul_subset_vadd_support', HahnModule.smul_add, HahnModule.coeff_single_smul_vadd, VertexOperator.of_coeff_apply_coeff, HVertexOperator.coeff_isPWOsupport, HahnModule.add_smul, HahnSeries.SummableFamily.hsum_smul_module, HahnSeries.SummableFamily.smul_apply, HahnSeries.SummableFamily.smul_hsum, HahnSeries.of_symm_smul_of_eq_mul, HahnSeries.SummableFamily.smul_toFun, VertexOperator.ncoeff_apply, HahnModule.coeff_smul_order_add_order, HahnModule.of_symm_smul, HahnModule.instIsScalarTowerHahnSeries_1, HVertexOperator.of_coeff_coeff, HVertexOperator.coeff_inj_iff, HahnModule.SMulCommClass, HahnModule.ext_iff, HahnModule.of_symm_add, HVertexOperator.coeff_inj, HahnModule.coeff_smul, HahnModule.coeff_single_zero_smul, VertexOperator.ext_iff, HVertexOperator.ext_iff, HahnModule.orderTop_vAdd_le_orderTop_smul, HahnModule.zero_smul', HahnModule.one_smul', HahnModule.of_smul, HahnModule.of_sub, HahnModule.of_add, VertexOperator.ncoeff_of_coeff, HahnModule.support_smul_subset_vadd_support, HVertexOperator.compHahnSeries_coeff, HahnModule.of_symm_zero, HahnModule.of_zero, HVertexOperator.coeff_comp, HVertexOperator.coeff_apply_apply, HVertexOperator.of_coeff_apply, HahnModule.coeff_smul_left, HahnModule.instIsTorsionFree, VertexOperator.coeff_eq_ncoeff, HVertexOperator.comp_apply, HVertexOperator.coeff_of_coeff, HahnModule.single_zero_smul_eq_smul, HahnModule.of_symm_sub

---

← Back to Index