| Name | Category | Theorems |
C π | CompOp | 14 mathmath: C_injective, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, map_C, LaurentSeries.algebraMap_apply, embDomainRingHom_C, algebraMap_apply, C_eq_algebraMap, C_zero, PowerSeries.coe_C, C_mul_eq_smul, C_one, order_C, C_apply, ofPowerSeries_C
|
embDomainAlgHom π | CompOp | 1 mathmath: embDomainAlgHom_apply_coeff
|
embDomainRingHom π | CompOp | 2 mathmath: embDomainRingHom_apply, embDomainRingHom_C
|
instAddCommGroupWithOne π | CompOp | β |
instAddCommMonoidWithOne π | CompOp | β |
instAlgebra π | CompOp | 14 mathmath: PowerSeries.heval_C, PowerSeries.coeff_heval, instNontrivialSubalgebra, PowerSeries.heval_apply, algebraMap_apply, C_eq_algebraMap, embDomainAlgHom_apply_coeff, toPowerSeriesAlg_apply, toPowerSeriesAlg_symm_apply_coeff, ofPowerSeriesAlg_apply_coeff, PowerSeries.heval_X, PowerSeries.heval_unit, PowerSeries.coeff_heval_zero, PowerSeries.heval_mul
|
instCommRing π | CompOp | 2 mathmath: LaurentSeries.powerSeriesEquivSubring_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply
|
instCommSemiring π | CompOp | 2 mathmath: LaurentSeries.of_powerSeries_localization, LaurentSeries.instIsFractionRingPowerSeries
|
instDistrib π | CompOp | β |
instIntCast π | CompOp | 1 mathmath: single_zero_intCast
|
instMul π | CompOp | 62 mathmath: instNoZeroDivisorsFinsuppNat, SummableFamily.mul_toFun, leadingCoeff_mul, LaurentSeries.LaurentSeriesRingEquiv_def, coeff_single_mul_add, coeff_mul, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, single_mul_single, single_zero_mul_eq_smul, order_mul, coeff_mul_left', toMvPowerSeries_symm_apply_coeff, instIsCancelMulZeroOfIsCancelAdd, orderTop_mul_of_nonzero, one_minus_single_neg_mul, PowerSeries.coe_mul, order_single_mul_of_isRegular, coeff_single_zero_mul, map_mul, of_symm_smul_of_eq_mul, order_mul_of_nonzero, instNoZeroDivisors, leadingCoeff_mul_of_ne_zero, coeff_mul_order_add_order, orderTop_mul_of_ne_zero, unit_aux, LaurentSeries.coe_X_compare, cardSupp_mul_single_le, cardSupp_single_mul_le, LaurentSeries.exists_powerSeries_of_memIntegers, orderTop_mul, coeff_toPowerSeries, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, coeff_toPowerSeries_symm, LaurentSeries.powerSeriesRingEquiv_coe_apply, orderTop_add_le_mul, SummableFamily.one_sub_self_mul_hsum_powers, support_mul_subset_add_support, coeff_toMvPowerSeries_symm, embDomain_mul, inv_def, coeff_mul_right', C_mul_eq_smul, coeff_toMvPowerSeries, coeff_mul_single, SummableFamily.hsum_smul, SummableFamily.hsum_mul, support_mul_subset, leadingCoeff_mul_of_nonzero, ofPowerSeries_apply, toMvPowerSeries_apply, LaurentSeries.ratfuncAdicComplRingEquiv_apply, coeff_mul_single_add, coeff_mul_single_zero, order_mul_of_ne_zero, LaurentSeries.mem_integers_of_powerSeries, toPowerSeries_apply, PowerSeries.heval_mul, toPowerSeries_symm_apply_coeff, coeff_single_mul, cardSupp_mul_le
|
instNNRatCast π | CompOp | 2 mathmath: single_zero_ofScientific, single_zero_nnratCast
|
instNatCast π | CompOp | 1 mathmath: single_zero_natCast
|
instNonAssocRing π | CompOp | β |
instNonAssocSemiring π | CompOp | 50 mathmath: C_injective, LaurentSeries.LaurentSeriesRingEquiv_def, ofPowerSeries_X_pow, PowerSeries.coe_add, SummableFamily.lsum_apply, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, embDomainRingHom_apply, PowerSeries.coeff_coe, LaurentSeries.coe_algebraMap, RatFunc.coe_coe, PowerSeries.coe_smul, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, map_C, LaurentSeries.val_le_one_iff_eq_coe, PowerSeries.coe_mul, PowerSeries.coe_sub, LaurentSeries.algebraMap_apply, embDomainRingHom_C, algebraMap_apply, ofPowerSeries_apply_coeff, ofPowerSeries_X, LaurentSeries.coe_X_compare, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, C_zero, PowerSeries.coe_zero, LaurentSeries.exists_powerSeries_of_memIntegers, PowerSeries.coe_C, PowerSeries.coe_neg, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, LaurentSeries.powerSeries_ext_subring, LaurentSeries.powerSeriesRingEquiv_coe_apply, LaurentSeries.powerSeriesEquivSubring_apply, Polynomial.algebraMap_hahnSeries_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, PowerSeries.coe_X, C_mul_eq_smul, C_one, order_C, ofPowerSeries_apply, PowerSeries.coe_one, ofPowerSeries_injective, C_apply, ofPowerSeries_C, PowerSeries.coe_pow, LaurentSeries.mem_integers_of_powerSeries, algebraMap_apply', LaurentSeries.X_order_mul_powerSeriesPart, LaurentSeries.coeff_coe_powerSeries, LaurentSeries.valuation_X_pow
|
instNonUnitalCommRing π | CompOp | β |
instNonUnitalCommSemiring π | CompOp | β |
instNonUnitalNonAssocRing π | CompOp | β |
instNonUnitalNonAssocSemiring π | CompOp | β |
instNonUnitalRing π | CompOp | β |
instNonUnitalSemiring π | CompOp | β |
instOne π | CompOp | 26 mathmath: PowerSeries.heval_C, SummableFamily.powers_zero, orderTop_sub_pos, SummableFamily.powers_of_not_orderTop_pos, orderTop_one, cardSupp_one_le, one_minus_single_neg_mul, embDomain_one, SummableFamily.embDomain_succ_smul_powers, map_one, SummableFamily.powerSeriesFamily_hsum_zero, unit_aux, coeff_one, single_zero_one, SummableFamily.one_sub_self_mul_hsum_powers, inv_def, leadingCoeff_one, HahnModule.one_smul', orderTop_self_sub_one_pos_iff, C_one, order_one, PowerSeries.coe_one, coeff_toOrderTopSubOnePos_pow, mem_orderTopSubOnePos_iff, support_one, cardSupp_one
|
instRatCast π | CompOp | 1 mathmath: single_zero_ratCast
|
instRing π | CompOp | 25 mathmath: LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, LaurentSeries.valuation_single_zpow, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.val_le_one_iff_eq_coe, mem_cardSuppLTSubring, addVal_le_of_coeff_ne_zero, LaurentSeries.exists_ratFunc_val_lt, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, addVal_apply_of_ne, LaurentSeries.valuation_LaurentSeries_equal_extension, LaurentSeries.powerSeries_ext_subring, LaurentSeries.powerSeriesEquivSubring_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, LaurentSeries.instLaurentSeriesComplete, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.valuation_compare, LaurentSeries.coe_range_dense, LaurentSeries.comparePkg_eq_extension, LaurentSeries.valuation_def, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, LaurentSeries.uniformContinuous_coeff, addVal_apply, LaurentSeries.exists_ratFunc_eq_v, LaurentSeries.valuation_X_pow
|
instSemiring π | CompOp | 60 mathmath: RatFunc.instFaithfulSMulPolynomialLaurentSeries, PowerSeries.heval_C, instIsStrictOrderedRingLexOfIsDomain, single_pow, PowerSeries.coeff_heval, SummableFamily.binomialFamily_apply_of_orderTop_nonpos, SummableFamily.lsum_apply, RatFunc.coe_X, LaurentSeries.coe_algebraMap, RatFunc.coe_coe, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, SummableFamily.coe_powers, SummableFamily.co_support_zero, isUnit_of_isUnit_leadingCoeff_AddUnitOrder, instNontrivialSubalgebra, PowerSeries.heval_apply, LaurentSeries.algebraMap_apply, LaurentSeries.exists_ratFunc_val_lt, SummableFamily.support_pow_subset_closure, algebraMap_apply, C_eq_algebraMap, embDomainAlgHom_apply_coeff, RatFunc.valuation_eq_LaurentSeries_valuation, RatFunc.algebraMap_apply_div, toPowerSeriesAlg_apply, isUnit_iff, toPowerSeriesAlg_symm_apply_coeff, binomial_power, SummableFamily.isPWO_iUnion_support_powers, pow_add, orderTop_nsmul_le_orderTop_pow, LaurentSeries.LaurentSeries_coe, ofPowerSeriesAlg_apply_coeff, PowerSeries.heval_X, SummableFamily.binomialFamily_apply, Polynomial.algebraMap_hahnSeries_apply, Polynomial.algebraMap_hahnSeries_injective, LaurentSeries.valuation_coe_ratFunc, SummableFamily.powerSeriesFamily_of_orderTop_pos, RatFunc.single_one_eq_pow, SummableFamily.powers_toFun, PowerSeries.heval_unit, LaurentSeries.coe_range_dense, order_pow, isUnit_of_orderTop_pos, instIsOrderedRingLexOfNoZeroDivisors, coeff_toOrderTopSubOnePos_pow, PowerSeries.coeff_heval_zero, instIsDomainOfIsCancelAdd, SummableFamily.powers_of_orderTop_pos, HahnModule.instIsTorsionFree, PowerSeries.coe_pow, PowerSeries.heval_mul, algebraMap_apply', val_toOrderTopSubOnePos_coe, mem_orderTopSubOnePos_iff, val_inv_toOrderTopSubOnePos_coe, LaurentSeries.valuation_X_pow, cardSupp_pow_le
|
orderTopSubOnePos π | CompOp | 6 mathmath: binomial_power, pow_add, coeff_toOrderTopSubOnePos_pow, val_toOrderTopSubOnePos_coe, mem_orderTopSubOnePos_iff, val_inv_toOrderTopSubOnePos_coe
|