Documentation Verification Report

PowerSeries

πŸ“ Source: Mathlib/RingTheory/HahnSeries/PowerSeries.lean

Statistics

MetricCount
DefinitionsofPowerSeries, ofPowerSeriesAlg, powerSeriesAlgebra, toMvPowerSeries, toPowerSeries, toPowerSeriesAlg, PowerSeries
7
TheoremsalgebraMap_apply', coeff_toMvPowerSeries, coeff_toMvPowerSeries_symm, coeff_toPowerSeries, coeff_toPowerSeries_symm, instNoZeroDivisorsFinsuppNat, ofPowerSeriesAlg_apply_coeff, ofPowerSeries_C, ofPowerSeries_X, ofPowerSeries_X_pow, ofPowerSeries_apply, ofPowerSeries_apply_coeff, ofPowerSeries_injective, toMvPowerSeries_apply, toMvPowerSeries_symm_apply_coeff, toPowerSeriesAlg_apply, toPowerSeriesAlg_symm_apply_coeff, toPowerSeries_apply, toPowerSeries_symm_apply_coeff, algebraMap_hahnSeries_apply, algebraMap_hahnSeries_injective
21
Total28

HahnSeries

Definitions

NameCategoryTheorems
ofPowerSeries πŸ“–CompOp
36 mathmath: LaurentSeries.LaurentSeriesRingEquiv_def, ofPowerSeries_X_pow, PowerSeries.coe_add, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, PowerSeries.coeff_coe, LaurentSeries.coe_algebraMap, RatFunc.coe_coe, PowerSeries.coe_smul, LaurentSeries.val_le_one_iff_eq_coe, PowerSeries.coe_mul, PowerSeries.coe_sub, ofPowerSeries_apply_coeff, ofPowerSeries_X, LaurentSeries.coe_X_compare, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, PowerSeries.coe_zero, LaurentSeries.exists_powerSeries_of_memIntegers, PowerSeries.coe_C, PowerSeries.coe_neg, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, LaurentSeries.powerSeriesRingEquiv_coe_apply, LaurentSeries.powerSeriesEquivSubring_apply, Polynomial.algebraMap_hahnSeries_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, PowerSeries.coe_X, ofPowerSeries_apply, PowerSeries.coe_one, ofPowerSeries_injective, ofPowerSeries_C, PowerSeries.coe_pow, LaurentSeries.mem_integers_of_powerSeries, algebraMap_apply', LaurentSeries.X_order_mul_powerSeriesPart, LaurentSeries.coeff_coe_powerSeries, LaurentSeries.valuation_X_pow
ofPowerSeriesAlg πŸ“–CompOp
1 mathmath: ofPowerSeriesAlg_apply_coeff
powerSeriesAlgebra πŸ“–CompOp
15 mathmath: RatFunc.instFaithfulSMulPolynomialLaurentSeries, RatFunc.coe_X, RatFunc.coe_coe, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.algebraMap_apply, LaurentSeries.exists_ratFunc_val_lt, RatFunc.valuation_eq_LaurentSeries_valuation, RatFunc.algebraMap_apply_div, LaurentSeries.LaurentSeries_coe, Polynomial.algebraMap_hahnSeries_apply, Polynomial.algebraMap_hahnSeries_injective, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.coe_range_dense, algebraMap_apply'
toMvPowerSeries πŸ“–CompOp
4 mathmath: toMvPowerSeries_symm_apply_coeff, coeff_toMvPowerSeries_symm, coeff_toMvPowerSeries, toMvPowerSeries_apply
toPowerSeries πŸ“–CompOp
5 mathmath: coeff_toPowerSeries, coeff_toPowerSeries_symm, ofPowerSeries_apply, toPowerSeries_apply, toPowerSeries_symm_apply_coeff
toPowerSeriesAlg πŸ“–CompOp
3 mathmath: toPowerSeriesAlg_apply, toPowerSeriesAlg_symm_apply_coeff, ofPowerSeriesAlg_apply_coeff

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
algebraMap
powerSeriesAlgebra
PowerSeries
PowerSeries.instSemiring
instNonAssocSemiring
ofPowerSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
coeff_toMvPowerSeries πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
RingEquiv
HahnSeries
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.partialorder
Nat.instPartialOrder
NonUnitalNonAssocSemiring.toMulZeroClass
instMul
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
MvPowerSeries.instMul
instAdd
AddCommMonoid.toAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
MvPowerSeries.instSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
toMvPowerSeries
coeff
β€”Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
coeff_toMvPowerSeries_symm πŸ“–mathematicalβ€”coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.partialorder
Nat.instPartialOrder
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingEquiv
MvPowerSeries
HahnSeries
MvPowerSeries.instMul
instMul
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
MvPowerSeries.instSemiring
instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
toMvPowerSeries
LinearMap
RingHom.id
MvPowerSeries.instAddCommMonoid
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
β€”Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
coeff_toPowerSeries πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
RingEquiv
HahnSeries
Nat.instPartialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instMul
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
MvPowerSeries.instMul
instAdd
AddCommMonoid.toAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
PowerSeries.instSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
toPowerSeries
coeff
β€”β€”
coeff_toPowerSeries_symm πŸ“–mathematicalβ€”coeff
Nat.instPartialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingEquiv
PowerSeries
HahnSeries
MvPowerSeries.instMul
instMul
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
PowerSeries.instSemiring
instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
toPowerSeries
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”Nat.instIsOrderedCancelAddMonoid
instNoZeroDivisorsFinsuppNat πŸ“–mathematicalβ€”NoZeroDivisors
HahnSeries
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.partialorder
Nat.instPartialOrder
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
instZero
β€”MulEquiv.noZeroDivisors
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
MvPowerSeries.instNoZeroDivisors
ofPowerSeriesAlg_apply_coeff πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
PowerSeries
HahnSeries
PowerSeries.instSemiring
instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
PowerSeries.instAlgebra
instAlgebra
AlgHom.funLike
ofPowerSeriesAlg
Set
Set.instMembership
Set.image
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
support
Nat.instPartialOrder
AlgEquiv
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
AlgEquiv.instFunLike
AlgEquiv.symm
toPowerSeriesAlg
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”Nat.instIsOrderedCancelAddMonoid
ofPowerSeries_C πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
ofPowerSeries
PowerSeries.C
C
β€”ext
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
StrictMono.injective
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.instIsOrderedCancelAddMonoid
coeff_single
CharP.cast_eq_zero
CharP.ofCharZero
PowerSeries.coeff_zero_C
embDomain_coeff
embDomain_notin_image_support
PowerSeries.coeff_C
ofPowerSeries_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
ofPowerSeries
PowerSeries.X
ZeroHom
instZero
ZeroHom.funLike
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”ext
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
StrictMono.injective
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.instIsOrderedCancelAddMonoid
coeff_single
Nat.cast_one
PowerSeries.coeff_one_X
embDomain_coeff
embDomain_notin_image_support
PowerSeries.coeff_X
ofPowerSeries_X_pow πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
ofPowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.X
ZeroHom
instZero
ZeroHom.funLike
single
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidWithOne.toOne
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ofPowerSeries_X
single_pow
nsmul_eq_mul
mul_one
one_pow
ofPowerSeries_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
ofPowerSeries
embDomain
Nat.instPartialOrder
Preorder.toLE
PartialOrder.toPreorder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
StrictMono.injective
Nat.instLinearOrder
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
RingEquiv
MvPowerSeries.instMul
instMul
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instAdd
AddCommMonoid.toAddMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
toPowerSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
ofPowerSeries_apply_coeff πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
PowerSeries
HahnSeries
PowerSeries.instSemiring
instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
ofPowerSeries
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
embDomain_mk_coeff
StrictMono.injective
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.instIsOrderedCancelAddMonoid
ofPowerSeries_injective πŸ“–mathematicalβ€”PowerSeries
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
PowerSeries.instSemiring
instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
ofPowerSeries
β€”Nat.instIsOrderedCancelAddMonoid
embDomain_injective
RingEquiv.injective
toMvPowerSeries_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HahnSeries
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.partialorder
Nat.instPartialOrder
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPowerSeries
instMul
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
MvPowerSeries.instMul
instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
MvPowerSeries.instSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
toMvPowerSeries
coeff
β€”Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
toMvPowerSeries_symm_apply_coeff πŸ“–mathematicalβ€”coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.partialorder
Nat.instPartialOrder
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingEquiv
MvPowerSeries
HahnSeries
MvPowerSeries.instMul
instMul
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
MvPowerSeries.instSemiring
instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
toMvPowerSeries
β€”Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
toPowerSeriesAlg_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HahnSeries
Nat.instPartialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries
instSemiring
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
PowerSeries.instSemiring
instAlgebra
PowerSeries.instAlgebra
AlgEquiv.instFunLike
toPowerSeriesAlg
coeff
β€”Nat.instIsOrderedCancelAddMonoid
toPowerSeriesAlg_symm_apply_coeff πŸ“–mathematicalβ€”coeff
Nat.instPartialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgEquiv
PowerSeries
HahnSeries
PowerSeries.instSemiring
instSemiring
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
PowerSeries.instAlgebra
instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
toPowerSeriesAlg
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”Nat.instIsOrderedCancelAddMonoid
toPowerSeries_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HahnSeries
Nat.instPartialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries
instMul
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
MvPowerSeries.instMul
instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
PowerSeries.instSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
toPowerSeries
coeff
β€”Nat.instIsOrderedCancelAddMonoid
toPowerSeries_symm_apply_coeff πŸ“–mathematicalβ€”coeff
Nat.instPartialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingEquiv
PowerSeries
HahnSeries
MvPowerSeries.instMul
instMul
Nat.instAddCommMonoid
Nat.instIsOrderedCancelAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
PowerSeries.instSemiring
instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
toPowerSeries
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”Nat.instIsOrderedCancelAddMonoid

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_hahnSeries_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
commSemiring
HahnSeries.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
algebraMap
HahnSeries.powerSeriesAlgebra
PowerSeries.algebraPolynomial
Algebra.id
PowerSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
HahnSeries.ofPowerSeries
toPowerSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
algebraMap_hahnSeries_injective πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
commSemiring
HahnSeries.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
RingHom.instFunLike
algebraMap
HahnSeries.powerSeriesAlgebra
PowerSeries.algebraPolynomial
Algebra.id
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
HahnSeries.ofPowerSeries_injective
coe_injective

(root)

Definitions

NameCategoryTheorems
PowerSeries πŸ“–CompOp
556 mathmath: PowerSeries.coeff_mul_eq_coeff_trunc_mul_truncβ‚‚, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_apply, CuspFormClass.qExpansion_isBigO, HahnSeries.SummableFamily.powerSeriesFamily_add, PowerSeries.WithPiTopology.hasSum_iff_hasSum_coeff, PowerSeries.hasSum_aeval, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, Polynomial.evalβ‚‚_C_X_eq_coe, Polynomial.coe_eq_one_iff, PowerSeries.constantCoeff_expand, PowerSeries.coeff_mul_one_sub_of_lt_order, PowerSeries.coeff_mul_of_lt_order, PowerSeries.IsRestricted.smul, PowerSeries.coeff_of_lt_order_toNat, PowerSeries.constantCoeff_subst, PowerSeries.WithPiTopology.continuous_coeff, ModularFormClass.qExpansionFormalMultilinearSeries_apply_norm, PowerSeries.coeff_mul_C, PowerSeries.heval_C, PowerSeries.coeff_rescale, qExpansion_eq_zero_iff, PowerSeries.invOneSubPow_zero, qExpansionRingHom_apply, PowerSeries.coeff_expand_mul, PowerSeries.catalanSeries_coeff, PowerSeries.weierstrassDistinguished_mul, PowerSeries.coeff_X_mul_largeSchroderSeries, PowerSeries.coeff_trunc, PowerSeries.expand_apply, PowerSeries.trunc_mul_trunc, PowerSeries.zero_weierstrassDiv, MvPowerSeries.rescaleUnit, PowerSeries.trunc_X_pow_self_mul, PowerSeries.zero_weierstrassMod, PowerSeries.eq_mul_weierstrassDiv_add_weierstrassMod, PowerSeries.derivative_exp, PowerSeries.invOneSubPow_inv_eq_one_sub_pow, LaurentSeries.LaurentSeriesRingEquiv_def, PowerSeries.coeff_of_lt_order, PowerSeries.algebraMap_apply'', PowerSeries.coeff_succ_mul_X, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_isPrime, PowerSeries.order_expand, PowerSeries.eq_divided_by_X_pow_order_Iff_Unit, PowerSeries.instUniqueFactorizationMonoidOfIsPrincipalIdealRingOfIsDomain, PowerSeries.Inv_divided_by_X_pow_order_leftInv, PowerSeries.X_prime, PowerSeries.Unit_of_divided_by_X_pow_order_zero, PowerSeries.degree_weierstrassMod_lt, PowerSeries.maximalIdeal_eq_span_X, PowerSeries.gaussNorm_monomial, HahnSeries.ofPowerSeries_X_pow, PowerSeries.divXPowOrder_prod, PowerSeries.coeff_ne_zero_C, PowerSeries.mapAlgHom_apply, PowerSeries.derivative_inv', PowerSeries.divXPowOrder_mul, PowerSeries.instIsDomain, PowerSeries.rescale_X, Polynomial.coe_one, Nat.Partition.tendsto_order_genFun_term_atTop_nhds_top, PowerSeries.coe_add, PowerSeries.catalanSeries_constantCoeff, PowerSeries.coeff_heval, PowerSeries.inv_eq_iff_mul_eq_one, PowerSeries.isUnit_exp, Polynomial.coe_monomial, PowerSeries.aeval_eq_sum, PowerSeries.IsRestricted.add, Polynomial.coe_eq_zero_iff, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, PowerSeries.order_mul_ge, PowerSeries.binomialSeries_coeff, PowerSeries.subst_mul, Polynomial.coe_C, PowerSeries.coeff_subst, Polynomial.bernoulli_generating_function, PowerSeries.eq_mul_inv_iff_mul_eq, PowerSeries.isUnit_divided_by_X_pow_order, PowerSeries.le_order_smul, PowerSeries.map_cos, PowerSeries.coeff_coe, PowerSeries.constantCoeff_X, PowerSeries.eq_shift_mul_X_pow_add_trunc, PowerSeries.gaussNorm_zero, LaurentSeries.coe_algebraMap, ringKrullDim_succ_le_ringKrullDim_powerseries, bernoulliPowerSeries_mul_exp_sub_one, PowerSeries.support_expand_subset, PowerSeries.IsWeierstrassDivisorAt.coeff_seq_succ_sub_seq_mem, RatFunc.coe_coe, PowerSeries.binomialSeries_add, PowerSeries.isUnit_iff_constantCoeff, PowerSeries.subst_pow, PowerSeries.WithPiTopology.continuous_constantCoeff, PowerSeries.derivativeFun_smul, PowerSeries.support_expand, PowerSeries.coeff_inv_aux, DividedPowers.exp_add, PowerSeries.degree_trunc_lt, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, PowerSeries.smul_weierstrassDiv, PowerSeries.WithPiTopology.tendsto_iff_coeff_tendsto, PowerSeries.coe_smul, PowerSeries.WithPiTopology.uniformContinuous_coeff, PowerSeries.normUnit_X, PowerSeries.binomialSeries_zero, PowerSeries.coeff_zero_one, qExpansion_of_mul, PowerSeries.coeff_X_mul_largeSchroderSeriesSeries_sq, PowerSeries.intValuation_eq_of_coe, LaurentSeries.val_le_one_iff_eq_coe, PowerSeries.constantCoeff_invUnitsSub, PowerSeries.mk_add_choose_mul_one_sub_pow_eq_one, PowerSeries.WithPiTopology.instT2Space, PowerSeries.divXPowOrder_one, PowerSeries.rescale_rescale, PowerSeries.trunc_trunc_mul_trunc, PowerSeries.coeff_invOfUnit, PowerSeries.coe_mul, PowerSeries.trunc_mul_C, PowerSeries.IsWeierstrassDivisionAt.degree_lt, PowerSeries.hasSum_of_monomials_self, PowerSeries.rescale_zero_apply, PowerSeries.commute_X_pow, HahnSeries.SummableFamily.hsum_powerSeriesFamily_mul, PowerSeries.substAlgHom_X, PowerSeries.IsWeierstrassFactorizationAt.natDegree_eq_toNat_order_map_of_ne_top, PowerSeries.heval_apply, Nat.Partition.hasProd_powerSeriesMk_card_countRestricted, PowerSeries.coe_sub, PowerSeries.mk_one_pow_eq_mk_choose_add, PowerSeries.expand_one_apply, PowerSeries.IsWeierstrassDivisionAt.eq_mul_add, PowerSeries.IsRestricted.mul, PowerSeries.coeff_derivativeFun, PowerSeries.rescale_zero, PowerSeries.le_order_map, PowerSeries.rescale_mk, PowerSeries.HasSubst.X_pow, PowerSeries.constantCoeff_surj, PowerSeries.largeSchroderSeries_eq_one_add_X_mul_largeSchroderSeries_add_X_mul_largeSchroderSeries_sq, bernoulli'PowerSeries_mul_exp_sub_one, PowerSeries.substAlgHom_comp_substAlgHom, PowerSeries.mul_X_injective, PowerSeries.evalβ‚‚_eq_tsum, PowerSeries.exp_mul_exp_neg_eq_one, PowerSeries.trunc_X_of, PowerSeries.instIsScalarTower, PowerSeries.WithPiTopology.summable_prod_of_tendsto_order_atTop_nhds_top, PowerSeries.constantCoeff_one, PowerSeries.map_sin, qExpansion_one, PowerSeries.derivativeFun_C, PowerSeries.constantCoeff_invOfUnit, PowerSeries.order_monomial, Polynomial.constantCoeff_coe, PowerSeries.monomial_mul_monomial, PowerSeries.normalized_count_X_eq_of_coe, PowerSeries.HasSubst.smul_X', PowerSeries.expand_smul, PowerSeries.weierstrassUnit_mul, PowerSeries.C_injective, PowerSeries.subsingleton_iff, Nat.Partition.summable_genFun_term, PowerSeries.le_order_mul, PowerSeries.eq_X_mul_shift_add_const, PowerSeries.constantCoeff_comp_C, PowerSeries.exp_mul_exp_eq_exp_add, LaurentSeries.powerSeriesPart_coeff, PowerSeries.IsWeierstrassDivisorAt.mod'_mk_eq_mod, PowerSeries.evalNegHom_X, PowerSeries.coeff_invUnitsSub, PowerSeries.prod_monomial, PowerSeries.X_pow_mul, PowerSeries.instUniqueFactorizationMonoid, LaurentSeries.exists_Polynomial_intValuation_lt, PowerSeries.coeff_succ_C, PowerSeries.trunc_trunc_mul, PowerSeries.weierstrassDiv_zero, PowerSeries.instNontrivial, PowerSeries.IsWeierstrassFactorization.natDegree_eq_toNat_order_map, PowerSeries.WithPiTopology.instIsTopologicalSemiring, Nat.Partition.powerSeriesMk_card_restricted_eq_tprod, PowerSeries.X_inv, PowerSeries.invOneSubPow_inv_zero_eq_one, PowerSeries.smul_weierstrassMod, PowerSeries.IsRestricted.isRestricted_iff, PowerSeries.exp_pow_sum, PowerSeries.order_zero, PowerSeries.one_le_order_iff_constCoeff_eq_zero, PowerSeries.WithPiTopology.denseRange_toPowerSeries, HahnSeries.SummableFamily.powerSeriesFamily_hsum_zero, PowerSeries.weierstrassDiv_zero_right, PowerSeries.coeff_mk, Polynomial.coe_smul, PowerSeries.sub_const_eq_X_mul_shift, PowerSeries.coeff_largeSchroderSeries, PowerSeries.constantCoeff_C, Polynomial.coe_add, PowerSeries.constantCoeff_inv, PowerSeries.isWeierstrassFactorizationAt_iff, HahnSeries.ofPowerSeries_apply_coeff, PowerSeries.mul_inv_cancel, LaurentSeries.of_powerSeries_localization, PowerSeries.invUnitsSub_mul_sub, PowerSeries.X_irreducible, RatFunc.valuation_eq_LaurentSeries_valuation, PowerSeries.monomial_zero_eq_C, PowerSeries.monomial_pow, PowerSeries.HasSubst.zero', PowerSeries.instNontrivialSubalgebra, PowerSeries.eq_X_pow_mul_shift_add_trunc, PowerSeries.trunc_trunc_of_le, PowerSeries.WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, PowerSeries.map_eq_zero, ModularFormClass.qExpansion_coeff, PowerSeries.mul_inv_rev, HahnSeries.ofPowerSeries_X, PowerSeries.X_mul_inj, PowerSeries.coeff_exp, PowerSeries.isUnit_weierstrassUnit, PowerSeries.one_sub_pow_add_mul_invOneSubPow_val_eq_one_sub_pow, PowerSeries.trunc_one_left, LaurentSeries.coe_X_compare, PowerSeries.IsWeierstrassDivisorAt.mod_add, PowerSeries.not_isField, PowerSeries.sub_const_eq_shift_mul_X, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, PowerSeries.IsWeierstrassFactorizationAt.isUnit, qExpansion_sub, PowerSeries.coe_divXPowOrderHom, PowerSeries.IsRestricted.neg, PowerSeries.derivative_invOf, PowerSeries.one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val, PowerSeries.HasSubst.monomial', PowerSeries.coe_zero, PowerSeries.IsWeierstrassDivisorAt.isUnit_shift, PowerSeries.map_X, Polynomial.coeff_mul_invOneSubPow_eq_hilbertPoly_eval, PowerSeries.zero_inv, PowerSeries.map_comp, PowerSeries.constantCoeff_divXPowOrder, HahnSeries.toPowerSeriesAlg_apply, PowerSeries.monomial_eq_mk, PowerSeries.inv_eq_zero, HahnSeries.toPowerSeriesAlg_symm_apply_coeff, LaurentSeries.exists_powerSeries_of_memIntegers, PowerSeries.trunc_C, Nat.Partition.hasProd_powerSeriesMk_card_restricted, PowerSeries.weierstrassMod_zero_left, ModularFormClass.qExpansion_coeff_zero, PowerSeries.WithPiTopology.continuous_C, PowerSeries.coe_C, PowerSeries.coe_neg, PowerSeries.min_order_le_order_add, PowerSeries.X_eq, PowerSeries.hasUnitMulPowIrreducibleFactorization, PowerSeries.divXPowOrder_mul_divXPowOrder, PowerSeries.instNoZeroDivisors, PowerSeries.gaussNorm_C, PowerSeries.map_subst, qExpansion_add, PowerSeries.coeff_comp_monomial, PowerSeries.expand_C, PowerSeries.map_algebraMap_eq_subst_X, PowerSeries.derivativeFun_one, PowerSeries.trunc_trunc_pow, PowerSeries.coeff_mul, PowerSeries.constantCoeff_largeSchroderSeries, PowerSeries.C_eq_algebraMap, PowerSeries.instSubsingleton, HahnSeries.coeff_toPowerSeries, PowerSeries.coeff_smul, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, PowerSeries.invOfUnit_eq, PowerSeries.coeff_monomial_same, PowerSeries.map_surjective, PowerSeries.X_mul, PowerSeries.map_invUnitsSub, PowerSeries.trunc_apply, PowerSeries.instIsDiscreteValuationRing, PowerSeries.isNoetherianRing, PowerSeries.le_order_pow, PowerSeries.constantCoeff_divXPowOrder_eq_zero_iff, PowerSeries.coeff_monomial, PowerSeries.X_pow_mul_injective, PowerSeries.subst_add, PowerSeries.expand_mul, PowerSeries.coeff_X, PowerSeries.IsWeierstrassDivisorAt.mod_smul, HahnSeries.coeff_toPowerSeries_symm, PowerSeries.constantCoeff_zero, PowerSeries.expand_mul_eq_comp, PowerSeries.IsWeierstrassDivisorAt.coeff_div, PowerSeries.invOneSubPow_add, PowerSeries.fg_iff_of_isPrime, Polynomial.coeToPowerSeries.algHom_apply, PowerSeries.order_pow, LaurentSeries.powerSeriesRingEquiv_coe_apply, PowerSeries.as_tsum, Nat.Partition.powerSeriesMk_card_countRestricted_eq_tprod, PowerSeries.Unit_of_divided_by_X_pow_order_nonzero, PowerSeries.derivative_coe, PowerSeries.coeff_zero_eq_constantCoeff_apply, HahnSeries.ofPowerSeriesAlg_apply_coeff, LaurentSeries.powerSeriesEquivSubring_apply, Polynomial.IsDistinguishedAt.algEquivQuotient_symm_apply, ModularFormClass.hasSum_qExpansion_of_abs_lt, PowerSeries.coeff_map, PowerSeries.evalβ‚‚_C, PowerSeries.constantCoeff_smul, PowerSeries.WithPiTopology.instIsUniformAddGroup, PowerSeries.heval_X, PowerSeries.comp_aeval, PowerSeries.IsWeierstrassFactorizationAt.eq_mul, PowerSeries.IsWeierstrassDivisionAt.add, PowerSeries.add_weierstrassMod, PowerSeries.coeff_one, PowerSeries.constantCoeff_mk, PowerSeries.eq_shift_mul_X_add_const, PowerSeries.coeff_prod, PowerSeries.coeff_mul_X_pow', PowerSeries.order_prod, Polynomial.coe_mul, PowerSeries.coeff_zero_C, PowerSeries.IsWeierstrassDivisorAt.div_add, PowerSeries.forall_coeff_eq_zero, Polynomial.algebraMap_hahnSeries_apply, PowerSeries.coeff_C, PowerSeries.coeff_inv, PowerSeries.rescale_injective, Polynomial.coeToPowerSeries.ringHom_apply, PowerSeries.map_expand, Polynomial.coe_sub, ModularFormClass.qExpansion_coeff_eq_circleIntegral, PowerSeries.order_one, Polynomial.coe_neg, PowerSeries.coeff_expand_of_not_dvd, LaurentSeries.powerSeriesEquivSubring_coe_apply, DividedPowers.exp_add', PowerSeries.WithPiTopology.instIsTopologicalRing, PowerSeries.coe_evalβ‚‚Hom, PowerSeries.coeff_zero_eq_constantCoeff, PowerSeries.coe_X, qExpansion_neg, PowerSeries.invOneSubPow_val_eq_mk_sub_one_add_choose_of_pos, PowerSeries.exp_pow_eq_rescale_exp, PowerSeries.IsWeierstrassDivisorAt.mod_zero, PowerSeries.X_pow_eq, PowerSeries.monomial_eq_C_mul_X_pow, PowerSeries.mul_X_pow_injective, PowerSeries.eq_inv_iff_mul_eq_one, Nat.Partition.summable_genFun_term', Nat.Partition.multipliable_powerSeriesMk_card_restricted, PowerSeries.divXPowOrder_pow, PowerSeries.HasSubst.comp, PowerSeries.X_pow_order_dvd, PowerSeries.ker_coeff_eq_max_ideal, PowerSeries.coeff_divXPowOrder, PowerSeries.IsRestricted.one, PowerSeries.trunc_one, HahnSeries.SummableFamily.powerSeriesFamily_of_orderTop_pos, PowerSeries.ext_iff, PowerSeries.algebraMap_eq, PowerSeries.coeff_X_pow_self, PowerSeries.trunc_succ, PowerSeries.continuous_aeval, PowerSeries.map_C, ModularFormClass.qExpansion_isBigO, PowerSeries.heval_unit, PowerSeries.invOneSubPow_eq_inv_one_sub_pow, qExpansion_mul, PowerSeries.intValuation_X, PowerSeries.coeff_mul_eq_coeff_trunc_mul_trunc, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, qExpansion_mul_coeff_zero, PowerSeries.rescale_neg_one_X, PowerSeries.constantCoeff_exp, PowerSeries.trunc_coe_eq_self, PowerSeries.coe_orderHom, PowerSeries.coeff_derivative, PowerSeries.catalanSeries_sq_mul_X_add_one, PowerSeries.coeff_subst_finite, PowerSeries.coeff_X_pow, PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, ModularFormClass.hasSum_qExpansion_of_norm_lt, PowerSeries.expand_monomial, PowerSeries.continuous_evalβ‚‚, qExpansion_coeff_unique, PowerSeries.isWeierstrassDivisionAt_iff, PowerSeries.coeff_subst', PowerSeries.order_neg, PowerSeries.instIsLocalRing, LaurentSeries.valuation_def, Polynomial.coe_injective, PowerSeries.C_inv, PowerSeries.derivative_subst, PowerSeries.IsRestricted.monomial, PowerSeries.coeff_expand, PowerSeries.algebraMap_apply, Polynomial.coe_zero, PowerSeries.coe_aeval, PowerSeries.derivativeFun_add, HahnSeries.ofPowerSeries_apply, PowerSeries.evalβ‚‚_trunc_eq_sum_range, PowerSeries.expand_one, PowerSeries.trunc_one_X, PowerSeries.X_pow_order_mul_divXPowOrder, PowerSeries.map_exp, PowerSeries.coe_one, PowerSeries.coeff_succ_X_mul, PowerSeries.IsWeierstrassDivisorAt.mk_mod'_eq_self, PowerSeries.eq_weierstrassDistinguished_mul_weierstrassUnit, PowerSeries.trunc_trunc, PowerSeries.order_eq_top, PowerSeries.span_X_isPrime, PowerSeries.invOneSubPow_val_one_eq_invUnitSub_one, PowerSeries.inv_eq_inv_aux, PowerSeries.comp_evalβ‚‚, PowerSeries.aeval_coe, Nat.Partition.hasProd_genFun, PowerSeries.IsWeierstrassDivisorAt.div_zero, PowerSeries.coeff_heval_zero, PowerSeries.order_ne_zero_iff_constCoeff_eq_zero, HahnSeries.ofPowerSeries_injective, PowerSeries.IsWeierstrassFactorizationAt.smul, PowerSeries.substAlgHom_coe, PowerSeries.WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, PowerSeries.coeff_C_mul, PowerSeries.X_pow_dvd_iff, PowerSeries.derivative_C, PowerSeries.X_pow_mul_inj, PowerSeries.IsWeierstrassDivisorAt.div_smul, PowerSeries.IsWeierstrassFactorizationAt.mul, PowerSeries.weierstrassMod_zero_right, PowerSeries.order_eq, PowerSeries.expand_X, ModularForm.qExpansion_mul, PowerSeries.coeff_zero_X_mul, PowerSeries.X_dvd_iff, PowerSeries.weierstrassMod_zero, PowerSeries.order_add_of_order_ne, PowerSeries.invUnitsSub_mul_X, PowerSeries.WithPiTopology.tendsto_trunc_atTop, PowerSeries.subst_smul, qExpansion_zero, PowerSeries.rescale_one, PowerSeries.IsWeierstrassDivisionAt.smul, PowerSeries.coeff_C_mul_X_pow, PowerSeries.order_eq_emultiplicity_X, PowerSeries.coeff_X_pow_mul', PowerSeries.binomialSeries_nat, PowerSeries.WithPiTopology.instT0Space, PowerSeries.algebraMap_apply', HahnSeries.ofPowerSeries_C, PowerSeries.coe_pow, PowerSeries.substAlgHom_comp_substAlgHom_apply, PowerSeries.weierstrassUnit_smul, PowerSeries.coeff_pow, LaurentSeries.mem_integers_of_powerSeries, PowerSeries.order_mul, LaurentSeries.instIsFractionRingPowerSeries, PowerSeries.binomialSeries_constantCoeff, PowerSeries.coeff_one_pow, HahnSeries.toPowerSeries_apply, PowerSeries.coeff_mul_X_pow, PowerSeries.smul_eq_C_mul, ModularFormClass.qExpansionFormalMultilinearSeries_coeff, PowerSeries.trunc_sub, PowerSeries.IsWeierstrassDivisorAt.seq_one, Nat.Partition.coeff_genFun, Nat.Partition.multipliable_powerSeriesMk_card_countRestricted, PowerSeries.map_id, PowerSeries.Inv_divided_by_X_pow_order_rightInv, PowerSeries.WithPiTopology.multipliable_one_sub_X_pow, PowerSeries.order_X_pow, PowerSeries.trunc_derivativeFun, PowerSeries.WithPiTopology.summable_of_tendsto_order_atTop_nhds_top, PowerSeries.heval_mul, HahnSeries.SummableFamily.support_powerSeriesFamily_subset, PowerSeries.rescale_neg_one_invOneSubPow, HahnSeries.algebraMap_apply', PowerSeries.coeff_subst_finite', PowerSeries.trunc_map, PowerSeries.smul_inv, qExpansion_of_pow, PowerSeries.coeff_coe_trunc_of_lt, LaurentSeries.X_order_mul_powerSeriesPart, PowerSeries.trunc_zero', PowerSeries.mul_X_pow_inj, qExpansion_smul, PowerSeries.coeff_mul_prod_one_sub_of_lt_order, PowerSeries.mk_one_mul_one_sub_eq_one, Polynomial.polynomial_map_coe, HahnSeries.toPowerSeries_symm_apply_coeff, PowerSeries.trunc_derivative, LaurentSeries.coeff_coe_powerSeries, PowerSeries.le_order_prod, Polynomial.IsDistinguishedAt.algEquivQuotient_apply, PowerSeries.order_add_of_order_eq, ModularFormClass.hasSum_qExpansion, PowerSeries.weierstrassDiv_zero_left, qExpansion_coeff_isBigO_of_norm_isBigO, ModularFormClass.qExpansion_coeff_eq_intervalIntegral, PowerSeries.coeff_one_mul, PowerSeries.add_weierstrassDiv, PowerSeries.monomial_zero_eq_C_apply, PowerSeries.HasEval.X, PowerSeries.mul_X_inj, Nat.Partition.multipliable_genFun, LaurentSeries.powerSeriesPart_zero, Polynomial.coe_pow, PowerSeries.IsRestricted.C, HahnSeries.SummableFamily.powerSeriesFamily_smul, Polynomial.coeff_coe, PowerSeries.derivative_inv, PowerSeries.IsWeierstrassDivisorAt.seq_zero, PowerSeries.divXPowOrder_X, PowerSeries.natDegree_trunc_lt, PowerSeries.derivativeFun_mul, PowerSeries.coe_substAlgHom, PowerSeries.trunc_X, PowerSeries.isWeierstrassDivisionAt_zero, PowerSeries.rescale_mul, PowerSeries.X_mul_injective, PowerSeries.derivative_X, PowerSeries.IsWeierstrassDivisorAt.coeff_div_sub_seq_mem, PowerSeries.map.isLocalHom, PowerSeries.invOneSubPow_val_succ_eq_mk_add_choose, PowerSeries.coeff_X_pow_mul, PowerSeries.map_injective, PowerSeries.coeff_zero_mul_X, PowerSeries.weierstrassDistinguished_smul, PowerSeries.uniformContinuous_evalβ‚‚, LaurentSeries.valuation_X_pow, Nat.Partition.genFun_eq_tprod, PowerSeries.commute_X, PowerSeries.X_eq_normalizeX, PowerSeries.order_monomial_of_ne_zero, PowerSeries.trunc_C_mul, PowerSeries.instIsNoetherianRing, PowerSeries.WithPiTopology.summable_iff_summable_coeff, PowerSeries.inv_mul_cancel, PowerSeries.divXPowOrder_zero, PowerSeries.hasSum_evalβ‚‚, PowerSeries.IsRestricted.zero, PowerSeries.coeff_one_X, LaurentSeries.powerSeriesPart_eq_zero, PowerSeries.WithPiTopology.instCompleteSpace, PowerSeries.derivative_pow, PowerSeries.order_eq_nat, PowerSeries.subst_comp_subst, PowerSeries.coeff_zero_X, PowerSeries.trunc_derivative'

---

← Back to Index