PowerSeries π | CompOp | 556 mathmath: PowerSeries.coeff_mul_eq_coeff_trunc_mul_truncβ, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_apply, CuspFormClass.qExpansion_isBigO, HahnSeries.SummableFamily.powerSeriesFamily_add, PowerSeries.WithPiTopology.hasSum_iff_hasSum_coeff, PowerSeries.hasSum_aeval, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, Polynomial.evalβ_C_X_eq_coe, Polynomial.coe_eq_one_iff, PowerSeries.constantCoeff_expand, PowerSeries.coeff_mul_one_sub_of_lt_order, PowerSeries.coeff_mul_of_lt_order, PowerSeries.IsRestricted.smul, PowerSeries.coeff_of_lt_order_toNat, PowerSeries.constantCoeff_subst, PowerSeries.WithPiTopology.continuous_coeff, ModularFormClass.qExpansionFormalMultilinearSeries_apply_norm, PowerSeries.coeff_mul_C, PowerSeries.heval_C, PowerSeries.coeff_rescale, qExpansion_eq_zero_iff, PowerSeries.invOneSubPow_zero, qExpansionRingHom_apply, PowerSeries.coeff_expand_mul, PowerSeries.catalanSeries_coeff, PowerSeries.weierstrassDistinguished_mul, PowerSeries.coeff_X_mul_largeSchroderSeries, PowerSeries.coeff_trunc, PowerSeries.expand_apply, PowerSeries.trunc_mul_trunc, PowerSeries.zero_weierstrassDiv, MvPowerSeries.rescaleUnit, PowerSeries.trunc_X_pow_self_mul, PowerSeries.zero_weierstrassMod, PowerSeries.eq_mul_weierstrassDiv_add_weierstrassMod, PowerSeries.derivative_exp, PowerSeries.invOneSubPow_inv_eq_one_sub_pow, LaurentSeries.LaurentSeriesRingEquiv_def, PowerSeries.coeff_of_lt_order, PowerSeries.algebraMap_apply'', PowerSeries.coeff_succ_mul_X, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_isPrime, PowerSeries.order_expand, PowerSeries.eq_divided_by_X_pow_order_Iff_Unit, PowerSeries.instUniqueFactorizationMonoidOfIsPrincipalIdealRingOfIsDomain, PowerSeries.Inv_divided_by_X_pow_order_leftInv, PowerSeries.X_prime, PowerSeries.Unit_of_divided_by_X_pow_order_zero, PowerSeries.degree_weierstrassMod_lt, PowerSeries.maximalIdeal_eq_span_X, PowerSeries.gaussNorm_monomial, HahnSeries.ofPowerSeries_X_pow, PowerSeries.divXPowOrder_prod, PowerSeries.coeff_ne_zero_C, PowerSeries.mapAlgHom_apply, PowerSeries.derivative_inv', PowerSeries.divXPowOrder_mul, PowerSeries.instIsDomain, PowerSeries.rescale_X, Polynomial.coe_one, Nat.Partition.tendsto_order_genFun_term_atTop_nhds_top, PowerSeries.coe_add, PowerSeries.catalanSeries_constantCoeff, PowerSeries.coeff_heval, PowerSeries.inv_eq_iff_mul_eq_one, PowerSeries.isUnit_exp, Polynomial.coe_monomial, PowerSeries.aeval_eq_sum, PowerSeries.IsRestricted.add, Polynomial.coe_eq_zero_iff, LaurentSeries.ofPowerSeries_powerSeriesPart, LaurentSeries.single_order_mul_powerSeriesPart, PowerSeries.order_mul_ge, PowerSeries.binomialSeries_coeff, PowerSeries.subst_mul, Polynomial.coe_C, PowerSeries.coeff_subst, Polynomial.bernoulli_generating_function, PowerSeries.eq_mul_inv_iff_mul_eq, PowerSeries.isUnit_divided_by_X_pow_order, PowerSeries.le_order_smul, PowerSeries.map_cos, PowerSeries.coeff_coe, PowerSeries.constantCoeff_X, PowerSeries.eq_shift_mul_X_pow_add_trunc, PowerSeries.gaussNorm_zero, LaurentSeries.coe_algebraMap, ringKrullDim_succ_le_ringKrullDim_powerseries, bernoulliPowerSeries_mul_exp_sub_one, PowerSeries.support_expand_subset, PowerSeries.IsWeierstrassDivisorAt.coeff_seq_succ_sub_seq_mem, RatFunc.coe_coe, PowerSeries.binomialSeries_add, PowerSeries.isUnit_iff_constantCoeff, PowerSeries.subst_pow, PowerSeries.WithPiTopology.continuous_constantCoeff, PowerSeries.derivativeFun_smul, PowerSeries.support_expand, PowerSeries.coeff_inv_aux, DividedPowers.exp_add, PowerSeries.degree_trunc_lt, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, PowerSeries.smul_weierstrassDiv, PowerSeries.WithPiTopology.tendsto_iff_coeff_tendsto, PowerSeries.coe_smul, PowerSeries.WithPiTopology.uniformContinuous_coeff, PowerSeries.normUnit_X, PowerSeries.binomialSeries_zero, PowerSeries.coeff_zero_one, qExpansion_of_mul, PowerSeries.coeff_X_mul_largeSchroderSeriesSeries_sq, PowerSeries.intValuation_eq_of_coe, LaurentSeries.val_le_one_iff_eq_coe, PowerSeries.constantCoeff_invUnitsSub, PowerSeries.mk_add_choose_mul_one_sub_pow_eq_one, PowerSeries.WithPiTopology.instT2Space, PowerSeries.divXPowOrder_one, PowerSeries.rescale_rescale, PowerSeries.trunc_trunc_mul_trunc, PowerSeries.coeff_invOfUnit, PowerSeries.coe_mul, PowerSeries.trunc_mul_C, PowerSeries.IsWeierstrassDivisionAt.degree_lt, PowerSeries.hasSum_of_monomials_self, PowerSeries.rescale_zero_apply, PowerSeries.commute_X_pow, HahnSeries.SummableFamily.hsum_powerSeriesFamily_mul, PowerSeries.substAlgHom_X, PowerSeries.IsWeierstrassFactorizationAt.natDegree_eq_toNat_order_map_of_ne_top, PowerSeries.heval_apply, Nat.Partition.hasProd_powerSeriesMk_card_countRestricted, PowerSeries.coe_sub, PowerSeries.mk_one_pow_eq_mk_choose_add, PowerSeries.expand_one_apply, PowerSeries.IsWeierstrassDivisionAt.eq_mul_add, PowerSeries.IsRestricted.mul, PowerSeries.coeff_derivativeFun, PowerSeries.rescale_zero, PowerSeries.le_order_map, PowerSeries.rescale_mk, PowerSeries.HasSubst.X_pow, PowerSeries.constantCoeff_surj, PowerSeries.largeSchroderSeries_eq_one_add_X_mul_largeSchroderSeries_add_X_mul_largeSchroderSeries_sq, bernoulli'PowerSeries_mul_exp_sub_one, PowerSeries.substAlgHom_comp_substAlgHom, PowerSeries.mul_X_injective, PowerSeries.evalβ_eq_tsum, PowerSeries.exp_mul_exp_neg_eq_one, PowerSeries.trunc_X_of, PowerSeries.instIsScalarTower, PowerSeries.WithPiTopology.summable_prod_of_tendsto_order_atTop_nhds_top, PowerSeries.constantCoeff_one, PowerSeries.map_sin, qExpansion_one, PowerSeries.derivativeFun_C, PowerSeries.constantCoeff_invOfUnit, PowerSeries.order_monomial, Polynomial.constantCoeff_coe, PowerSeries.monomial_mul_monomial, PowerSeries.normalized_count_X_eq_of_coe, PowerSeries.HasSubst.smul_X', PowerSeries.expand_smul, PowerSeries.weierstrassUnit_mul, PowerSeries.C_injective, PowerSeries.subsingleton_iff, Nat.Partition.summable_genFun_term, PowerSeries.le_order_mul, PowerSeries.eq_X_mul_shift_add_const, PowerSeries.constantCoeff_comp_C, PowerSeries.exp_mul_exp_eq_exp_add, LaurentSeries.powerSeriesPart_coeff, PowerSeries.IsWeierstrassDivisorAt.mod'_mk_eq_mod, PowerSeries.evalNegHom_X, PowerSeries.coeff_invUnitsSub, PowerSeries.prod_monomial, PowerSeries.X_pow_mul, PowerSeries.instUniqueFactorizationMonoid, LaurentSeries.exists_Polynomial_intValuation_lt, PowerSeries.coeff_succ_C, PowerSeries.trunc_trunc_mul, PowerSeries.weierstrassDiv_zero, PowerSeries.instNontrivial, PowerSeries.IsWeierstrassFactorization.natDegree_eq_toNat_order_map, PowerSeries.WithPiTopology.instIsTopologicalSemiring, Nat.Partition.powerSeriesMk_card_restricted_eq_tprod, PowerSeries.X_inv, PowerSeries.invOneSubPow_inv_zero_eq_one, PowerSeries.smul_weierstrassMod, PowerSeries.IsRestricted.isRestricted_iff, PowerSeries.exp_pow_sum, PowerSeries.order_zero, PowerSeries.one_le_order_iff_constCoeff_eq_zero, PowerSeries.WithPiTopology.denseRange_toPowerSeries, HahnSeries.SummableFamily.powerSeriesFamily_hsum_zero, PowerSeries.weierstrassDiv_zero_right, PowerSeries.coeff_mk, Polynomial.coe_smul, PowerSeries.sub_const_eq_X_mul_shift, PowerSeries.coeff_largeSchroderSeries, PowerSeries.constantCoeff_C, Polynomial.coe_add, PowerSeries.constantCoeff_inv, PowerSeries.isWeierstrassFactorizationAt_iff, HahnSeries.ofPowerSeries_apply_coeff, PowerSeries.mul_inv_cancel, LaurentSeries.of_powerSeries_localization, PowerSeries.invUnitsSub_mul_sub, PowerSeries.X_irreducible, RatFunc.valuation_eq_LaurentSeries_valuation, PowerSeries.monomial_zero_eq_C, PowerSeries.monomial_pow, PowerSeries.HasSubst.zero', PowerSeries.instNontrivialSubalgebra, PowerSeries.eq_X_pow_mul_shift_add_trunc, PowerSeries.trunc_trunc_of_le, PowerSeries.WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, PowerSeries.map_eq_zero, ModularFormClass.qExpansion_coeff, PowerSeries.mul_inv_rev, HahnSeries.ofPowerSeries_X, PowerSeries.X_mul_inj, PowerSeries.coeff_exp, PowerSeries.isUnit_weierstrassUnit, PowerSeries.one_sub_pow_add_mul_invOneSubPow_val_eq_one_sub_pow, PowerSeries.trunc_one_left, LaurentSeries.coe_X_compare, PowerSeries.IsWeierstrassDivisorAt.mod_add, PowerSeries.not_isField, PowerSeries.sub_const_eq_shift_mul_X, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, PowerSeries.IsWeierstrassFactorizationAt.isUnit, qExpansion_sub, PowerSeries.coe_divXPowOrderHom, PowerSeries.IsRestricted.neg, PowerSeries.derivative_invOf, PowerSeries.one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val, PowerSeries.HasSubst.monomial', PowerSeries.coe_zero, PowerSeries.IsWeierstrassDivisorAt.isUnit_shift, PowerSeries.map_X, Polynomial.coeff_mul_invOneSubPow_eq_hilbertPoly_eval, PowerSeries.zero_inv, PowerSeries.map_comp, PowerSeries.constantCoeff_divXPowOrder, HahnSeries.toPowerSeriesAlg_apply, PowerSeries.monomial_eq_mk, PowerSeries.inv_eq_zero, HahnSeries.toPowerSeriesAlg_symm_apply_coeff, LaurentSeries.exists_powerSeries_of_memIntegers, PowerSeries.trunc_C, Nat.Partition.hasProd_powerSeriesMk_card_restricted, PowerSeries.weierstrassMod_zero_left, ModularFormClass.qExpansion_coeff_zero, PowerSeries.WithPiTopology.continuous_C, PowerSeries.coe_C, PowerSeries.coe_neg, PowerSeries.min_order_le_order_add, PowerSeries.X_eq, PowerSeries.hasUnitMulPowIrreducibleFactorization, PowerSeries.divXPowOrder_mul_divXPowOrder, PowerSeries.instNoZeroDivisors, PowerSeries.gaussNorm_C, PowerSeries.map_subst, qExpansion_add, PowerSeries.coeff_comp_monomial, PowerSeries.expand_C, PowerSeries.map_algebraMap_eq_subst_X, PowerSeries.derivativeFun_one, PowerSeries.trunc_trunc_pow, PowerSeries.coeff_mul, PowerSeries.constantCoeff_largeSchroderSeries, PowerSeries.C_eq_algebraMap, PowerSeries.instSubsingleton, HahnSeries.coeff_toPowerSeries, PowerSeries.coeff_smul, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, PowerSeries.invOfUnit_eq, PowerSeries.coeff_monomial_same, PowerSeries.map_surjective, PowerSeries.X_mul, PowerSeries.map_invUnitsSub, PowerSeries.trunc_apply, PowerSeries.instIsDiscreteValuationRing, PowerSeries.isNoetherianRing, PowerSeries.le_order_pow, PowerSeries.constantCoeff_divXPowOrder_eq_zero_iff, PowerSeries.coeff_monomial, PowerSeries.X_pow_mul_injective, PowerSeries.subst_add, PowerSeries.expand_mul, PowerSeries.coeff_X, PowerSeries.IsWeierstrassDivisorAt.mod_smul, HahnSeries.coeff_toPowerSeries_symm, PowerSeries.constantCoeff_zero, PowerSeries.expand_mul_eq_comp, PowerSeries.IsWeierstrassDivisorAt.coeff_div, PowerSeries.invOneSubPow_add, PowerSeries.fg_iff_of_isPrime, Polynomial.coeToPowerSeries.algHom_apply, PowerSeries.order_pow, LaurentSeries.powerSeriesRingEquiv_coe_apply, PowerSeries.as_tsum, Nat.Partition.powerSeriesMk_card_countRestricted_eq_tprod, PowerSeries.Unit_of_divided_by_X_pow_order_nonzero, PowerSeries.derivative_coe, PowerSeries.coeff_zero_eq_constantCoeff_apply, HahnSeries.ofPowerSeriesAlg_apply_coeff, LaurentSeries.powerSeriesEquivSubring_apply, Polynomial.IsDistinguishedAt.algEquivQuotient_symm_apply, ModularFormClass.hasSum_qExpansion_of_abs_lt, PowerSeries.coeff_map, PowerSeries.evalβ_C, PowerSeries.constantCoeff_smul, PowerSeries.WithPiTopology.instIsUniformAddGroup, PowerSeries.heval_X, PowerSeries.comp_aeval, PowerSeries.IsWeierstrassFactorizationAt.eq_mul, PowerSeries.IsWeierstrassDivisionAt.add, PowerSeries.add_weierstrassMod, PowerSeries.coeff_one, PowerSeries.constantCoeff_mk, PowerSeries.eq_shift_mul_X_add_const, PowerSeries.coeff_prod, PowerSeries.coeff_mul_X_pow', PowerSeries.order_prod, Polynomial.coe_mul, PowerSeries.coeff_zero_C, PowerSeries.IsWeierstrassDivisorAt.div_add, PowerSeries.forall_coeff_eq_zero, Polynomial.algebraMap_hahnSeries_apply, PowerSeries.coeff_C, PowerSeries.coeff_inv, PowerSeries.rescale_injective, Polynomial.coeToPowerSeries.ringHom_apply, PowerSeries.map_expand, Polynomial.coe_sub, ModularFormClass.qExpansion_coeff_eq_circleIntegral, PowerSeries.order_one, Polynomial.coe_neg, PowerSeries.coeff_expand_of_not_dvd, LaurentSeries.powerSeriesEquivSubring_coe_apply, DividedPowers.exp_add', PowerSeries.WithPiTopology.instIsTopologicalRing, PowerSeries.coe_evalβHom, PowerSeries.coeff_zero_eq_constantCoeff, PowerSeries.coe_X, qExpansion_neg, PowerSeries.invOneSubPow_val_eq_mk_sub_one_add_choose_of_pos, PowerSeries.exp_pow_eq_rescale_exp, PowerSeries.IsWeierstrassDivisorAt.mod_zero, PowerSeries.X_pow_eq, PowerSeries.monomial_eq_C_mul_X_pow, PowerSeries.mul_X_pow_injective, PowerSeries.eq_inv_iff_mul_eq_one, Nat.Partition.summable_genFun_term', Nat.Partition.multipliable_powerSeriesMk_card_restricted, PowerSeries.divXPowOrder_pow, PowerSeries.HasSubst.comp, PowerSeries.X_pow_order_dvd, PowerSeries.ker_coeff_eq_max_ideal, PowerSeries.coeff_divXPowOrder, PowerSeries.IsRestricted.one, PowerSeries.trunc_one, HahnSeries.SummableFamily.powerSeriesFamily_of_orderTop_pos, PowerSeries.ext_iff, PowerSeries.algebraMap_eq, PowerSeries.coeff_X_pow_self, PowerSeries.trunc_succ, PowerSeries.continuous_aeval, PowerSeries.map_C, ModularFormClass.qExpansion_isBigO, PowerSeries.heval_unit, PowerSeries.invOneSubPow_eq_inv_one_sub_pow, qExpansion_mul, PowerSeries.intValuation_X, PowerSeries.coeff_mul_eq_coeff_trunc_mul_trunc, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, qExpansion_mul_coeff_zero, PowerSeries.rescale_neg_one_X, PowerSeries.constantCoeff_exp, PowerSeries.trunc_coe_eq_self, PowerSeries.coe_orderHom, PowerSeries.coeff_derivative, PowerSeries.catalanSeries_sq_mul_X_add_one, PowerSeries.coeff_subst_finite, PowerSeries.coeff_X_pow, PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, ModularFormClass.hasSum_qExpansion_of_norm_lt, PowerSeries.expand_monomial, PowerSeries.continuous_evalβ, qExpansion_coeff_unique, PowerSeries.isWeierstrassDivisionAt_iff, PowerSeries.coeff_subst', PowerSeries.order_neg, PowerSeries.instIsLocalRing, LaurentSeries.valuation_def, Polynomial.coe_injective, PowerSeries.C_inv, PowerSeries.derivative_subst, PowerSeries.IsRestricted.monomial, PowerSeries.coeff_expand, PowerSeries.algebraMap_apply, Polynomial.coe_zero, PowerSeries.coe_aeval, PowerSeries.derivativeFun_add, HahnSeries.ofPowerSeries_apply, PowerSeries.evalβ_trunc_eq_sum_range, PowerSeries.expand_one, PowerSeries.trunc_one_X, PowerSeries.X_pow_order_mul_divXPowOrder, PowerSeries.map_exp, PowerSeries.coe_one, PowerSeries.coeff_succ_X_mul, PowerSeries.IsWeierstrassDivisorAt.mk_mod'_eq_self, PowerSeries.eq_weierstrassDistinguished_mul_weierstrassUnit, PowerSeries.trunc_trunc, PowerSeries.order_eq_top, PowerSeries.span_X_isPrime, PowerSeries.invOneSubPow_val_one_eq_invUnitSub_one, PowerSeries.inv_eq_inv_aux, PowerSeries.comp_evalβ, PowerSeries.aeval_coe, Nat.Partition.hasProd_genFun, PowerSeries.IsWeierstrassDivisorAt.div_zero, PowerSeries.coeff_heval_zero, PowerSeries.order_ne_zero_iff_constCoeff_eq_zero, HahnSeries.ofPowerSeries_injective, PowerSeries.IsWeierstrassFactorizationAt.smul, PowerSeries.substAlgHom_coe, PowerSeries.WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, PowerSeries.coeff_C_mul, PowerSeries.X_pow_dvd_iff, PowerSeries.derivative_C, PowerSeries.X_pow_mul_inj, PowerSeries.IsWeierstrassDivisorAt.div_smul, PowerSeries.IsWeierstrassFactorizationAt.mul, PowerSeries.weierstrassMod_zero_right, PowerSeries.order_eq, PowerSeries.expand_X, ModularForm.qExpansion_mul, PowerSeries.coeff_zero_X_mul, PowerSeries.X_dvd_iff, PowerSeries.weierstrassMod_zero, PowerSeries.order_add_of_order_ne, PowerSeries.invUnitsSub_mul_X, PowerSeries.WithPiTopology.tendsto_trunc_atTop, PowerSeries.subst_smul, qExpansion_zero, PowerSeries.rescale_one, PowerSeries.IsWeierstrassDivisionAt.smul, PowerSeries.coeff_C_mul_X_pow, PowerSeries.order_eq_emultiplicity_X, PowerSeries.coeff_X_pow_mul', PowerSeries.binomialSeries_nat, PowerSeries.WithPiTopology.instT0Space, PowerSeries.algebraMap_apply', HahnSeries.ofPowerSeries_C, PowerSeries.coe_pow, PowerSeries.substAlgHom_comp_substAlgHom_apply, PowerSeries.weierstrassUnit_smul, PowerSeries.coeff_pow, LaurentSeries.mem_integers_of_powerSeries, PowerSeries.order_mul, LaurentSeries.instIsFractionRingPowerSeries, PowerSeries.binomialSeries_constantCoeff, PowerSeries.coeff_one_pow, HahnSeries.toPowerSeries_apply, PowerSeries.coeff_mul_X_pow, PowerSeries.smul_eq_C_mul, ModularFormClass.qExpansionFormalMultilinearSeries_coeff, PowerSeries.trunc_sub, PowerSeries.IsWeierstrassDivisorAt.seq_one, Nat.Partition.coeff_genFun, Nat.Partition.multipliable_powerSeriesMk_card_countRestricted, PowerSeries.map_id, PowerSeries.Inv_divided_by_X_pow_order_rightInv, PowerSeries.WithPiTopology.multipliable_one_sub_X_pow, PowerSeries.order_X_pow, PowerSeries.trunc_derivativeFun, PowerSeries.WithPiTopology.summable_of_tendsto_order_atTop_nhds_top, PowerSeries.heval_mul, HahnSeries.SummableFamily.support_powerSeriesFamily_subset, PowerSeries.rescale_neg_one_invOneSubPow, HahnSeries.algebraMap_apply', PowerSeries.coeff_subst_finite', PowerSeries.trunc_map, PowerSeries.smul_inv, qExpansion_of_pow, PowerSeries.coeff_coe_trunc_of_lt, LaurentSeries.X_order_mul_powerSeriesPart, PowerSeries.trunc_zero', PowerSeries.mul_X_pow_inj, qExpansion_smul, PowerSeries.coeff_mul_prod_one_sub_of_lt_order, PowerSeries.mk_one_mul_one_sub_eq_one, Polynomial.polynomial_map_coe, HahnSeries.toPowerSeries_symm_apply_coeff, PowerSeries.trunc_derivative, LaurentSeries.coeff_coe_powerSeries, PowerSeries.le_order_prod, Polynomial.IsDistinguishedAt.algEquivQuotient_apply, PowerSeries.order_add_of_order_eq, ModularFormClass.hasSum_qExpansion, PowerSeries.weierstrassDiv_zero_left, qExpansion_coeff_isBigO_of_norm_isBigO, ModularFormClass.qExpansion_coeff_eq_intervalIntegral, PowerSeries.coeff_one_mul, PowerSeries.add_weierstrassDiv, PowerSeries.monomial_zero_eq_C_apply, PowerSeries.HasEval.X, PowerSeries.mul_X_inj, Nat.Partition.multipliable_genFun, LaurentSeries.powerSeriesPart_zero, Polynomial.coe_pow, PowerSeries.IsRestricted.C, HahnSeries.SummableFamily.powerSeriesFamily_smul, Polynomial.coeff_coe, PowerSeries.derivative_inv, PowerSeries.IsWeierstrassDivisorAt.seq_zero, PowerSeries.divXPowOrder_X, PowerSeries.natDegree_trunc_lt, PowerSeries.derivativeFun_mul, PowerSeries.coe_substAlgHom, PowerSeries.trunc_X, PowerSeries.isWeierstrassDivisionAt_zero, PowerSeries.rescale_mul, PowerSeries.X_mul_injective, PowerSeries.derivative_X, PowerSeries.IsWeierstrassDivisorAt.coeff_div_sub_seq_mem, PowerSeries.map.isLocalHom, PowerSeries.invOneSubPow_val_succ_eq_mk_add_choose, PowerSeries.coeff_X_pow_mul, PowerSeries.map_injective, PowerSeries.coeff_zero_mul_X, PowerSeries.weierstrassDistinguished_smul, PowerSeries.uniformContinuous_evalβ, LaurentSeries.valuation_X_pow, Nat.Partition.genFun_eq_tprod, PowerSeries.commute_X, PowerSeries.X_eq_normalizeX, PowerSeries.order_monomial_of_ne_zero, PowerSeries.trunc_C_mul, PowerSeries.instIsNoetherianRing, PowerSeries.WithPiTopology.summable_iff_summable_coeff, PowerSeries.inv_mul_cancel, PowerSeries.divXPowOrder_zero, PowerSeries.hasSum_evalβ, PowerSeries.IsRestricted.zero, PowerSeries.coeff_one_X, LaurentSeries.powerSeriesPart_eq_zero, PowerSeries.WithPiTopology.instCompleteSpace, PowerSeries.derivative_pow, PowerSeries.order_eq_nat, PowerSeries.subst_comp_subst, PowerSeries.coeff_zero_X, PowerSeries.trunc_derivative'
|