| Name | Category | Theorems |
coeff π | CompOp | 6 mathmath: PowerSeries.coeff_heval, coeff_support, coeff_apply, support_powerSeriesFamily_subset, coeff_hsum_eq_sum, coeff_def
|
const π | CompOp | 2 mathmath: const_toFun, smul_eq
|
embDomain π | CompOp | 5 mathmath: embDomain_apply, embDomain_notin_range, embDomain_succ_smul_powers, hsum_embDomain, embDomain_image
|
hsum π | CompOp | 31 mathmath: hsum_orderTop_of_le, coeff_hsum_eq_sum_of_subset, support_hsum_subset, lsum_apply, coeff_hsum_mul, hsum_smul_module, hsum_powerSeriesFamily_mul, PowerSeries.heval_apply, smul_hsum, hsum_add, powerSeriesFamily_hsum_zero, hsum_embDomain, hsum_ofFinsupp, orderTop_hsum_binomialFamily_pos, HahnSeries.binomial_power, coeff_smul, hsum_single, one_sub_self_mul_hsum_powers, coeff_hsum, HahnSeries.inv_def, hsum_smul, hsum_mul, hsum_smulFamily, hsum_unique, hsum_equiv, HahnSeries.cardSupp_hsum_powers_le, hsum_sub, coeff_hsum_eq_sum, hsum_leadingCoeff_of_le, HahnSeries.cardSupp_hsum_le, hsum_zero
|
instAdd π | CompOp | 4 mathmath: powerSeriesFamily_add, coe_add, add_apply, hsum_add
|
instAddCommGroup π | CompOp | β |
instAddCommMonoid π | CompOp | 1 mathmath: lsum_apply
|
instFunLike π | CompOp | 47 mathmath: zero_apply, embDomain_apply, coe_neg, mul_toFun, ext_iff, binomialFamily_orderTop_pos, coe_add, add_apply, support_hsum_subset, embDomain_notin_range, binomialFamily_apply_of_orderTop_nonpos, coeff_hsum_mul, sub_apply, smul_apply', Equiv_toFun, smul_apply, coe_powers, isPWO_iUnion_support, coe_smul', single_toFun, smul_support_subset_prod, smul_toFun, smul_support_finite, coe_injective, const_toFun, coeff_support, coe_mk, coeff_smul, coe_sub, smulFamily_toFun, binomialFamily_apply, neg_apply, coeff_hsum, coe_zero, sum_vAddAntidiagonal_eq, powerSeriesFamily_of_orderTop_pos, powers_toFun, hsum_smulFamily, coeff_apply, hsum_unique, embDomain_image, powers_of_orderTop_pos, coeff_hsum_eq_sum, coeff_def, HahnSeries.cardSupp_hsum_le, finite_co_support, coe_ofFinsupp
|
instInhabited π | CompOp | β |
instModule π | CompOp | 1 mathmath: lsum_apply
|
instNeg π | CompOp | 2 mathmath: coe_neg, neg_apply
|
instSMul π | CompOp | 2 mathmath: smul_apply', coe_smul'
|
instSMul_1 π | CompOp | 6 mathmath: hsum_smul_module, smul_apply, embDomain_succ_smul_powers, smul_eq, hsum_smul, powerSeriesFamily_smul
|
instSub π | CompOp | 4 mathmath: sub_apply, embDomain_succ_smul_powers, coe_sub, hsum_sub
|
instZero π | CompOp | 3 mathmath: zero_apply, coe_zero, hsum_zero
|
lsum π | CompOp | 1 mathmath: lsum_apply
|
mul π | CompOp | 6 mathmath: mul_toFun, coeff_hsum_mul, hsum_powerSeriesFamily_mul, hsum_mul, support_powerSeriesFamily_subset, mul_eq_smul
|
ofFinsupp π | CompOp | 3 mathmath: embDomain_succ_smul_powers, hsum_ofFinsupp, coe_ofFinsupp
|
powers π | CompOp | 9 mathmath: powers_zero, powers_of_not_orderTop_pos, coe_powers, embDomain_succ_smul_powers, one_sub_self_mul_hsum_powers, HahnSeries.inv_def, powers_toFun, powers_of_orderTop_pos, HahnSeries.cardSupp_hsum_powers_le
|
single π | CompOp | 4 mathmath: powers_zero, powers_of_not_orderTop_pos, single_toFun, hsum_single
|
smul π | CompOp | 5 mathmath: smul_hsum, smul_toFun, smul_eq, coeff_smul, mul_eq_smul
|
smulFamily π | CompOp | 2 mathmath: smulFamily_toFun, hsum_smulFamily
|
toFun π | CompOp | 4 mathmath: isPWO_iUnion_support', smul_support_subset_prod, sum_vAddAntidiagonal_eq, finite_co_support'
|