Documentation Verification Report

Henselian

πŸ“ Source: Mathlib/RingTheory/Henselian.lean

Statistics

MetricCount
DefinitionsHenselianLocalRing, HenselianRing
2
Theoremshenselian, is_henselian, toIsLocalRing, is_henselian, jac, henselianRing, instHenselianRingMaximalIdeal, isLocalHom_of_le_jacobson_bot
8
Total10

Field

Theorems

NameKindAssumesProvesValidatesDepends On
henselian πŸ“–mathematicalβ€”HenselianLocalRing
toCommRing
β€”instIsLocalRing
Ideal.eq_bot_of_prime
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
sub_self

HenselianLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
is_henselian πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
toIsLocalRing
Polynomial.eval
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
LinearMap
RingHom.id
Polynomial
Polynomial.semiring
Polynomial.module
LinearMap.instFunLike
Polynomial.derivative
Polynomial.IsRoot
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
toIsLocalRing πŸ“–mathematicalβ€”IsLocalRing
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”

HenselianRing

Theorems

NameKindAssumesProvesValidatesDepends On
is_henselian πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.eval
IsUnit
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ideal.Quotient.semiring
DFunLike.coe
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
LinearMap
RingHom.id
Polynomial
Polynomial.semiring
Polynomial.module
LinearMap.instFunLike
Polynomial.derivative
Polynomial.IsRoot
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”
jac πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommRing.toRing
Bot.bot
Ring.toSemiring
Submodule.instBot
β€”β€”

IsAdicComplete

Theorems

NameKindAssumesProvesValidatesDepends On
henselianRing πŸ“–mathematicalβ€”HenselianRingβ€”le_jacobson_bot
Ideal.instIsTwoSided_1
sub_eq_add_neg
add_zero
SModEq.add
SModEq.zero
Ideal.neg_mem_iff
Ideal.mul_mem_right
SModEq.trans
SModEq.eval
IsUnit.of_map
isLocalHom_of_le_jacobson_bot
SModEq.def
IsScalarTower.right
zero_add
pow_one
Polynomial.taylor_eval_sub
add_neg_cancel_comm
Polynomial.eval_eq_sum
Nat.instAtLeastTwoHAddOfNat
Polynomial.sum_over_range'
MulZeroClass.zero_mul
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
zero_lt_two
Nat.instZeroLEOneClass
Finset.sum_range_add_sum_Ico
Ideal.add_mem
one_add_one_eq_two
Finset.sum_range_succ
Finset.range_one
Finset.sum_singleton
Polynomial.taylor_coeff_zero
Polynomial.taylor_coeff_one
pow_zero
mul_one
mul_neg
mul_left_comm
Ring.mul_inverse_cancel
add_neg_cancel
Ideal.zero_mem
Submodule.sum_mem
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_mul
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Ideal.mul_mem_left
Ideal.pow_le_pow_right
IsScalarTower.left
pow_mul'
Ideal.pow_mem_pow
Ideal.one_eq_top
Ideal.smul_eq_mul
SModEq.refl
add_assoc
SModEq.symm
le_self_add
Nat.instCanonicallyOrderedAdd
IsPrecomplete.prec'
toIsPrecomplete
IsHausdorff.haus'
toIsHausdorff
SModEq.sub_mem
SModEq.rfl

(root)

Definitions

NameCategoryTheorems
HenselianLocalRing πŸ“–CompData
2 mathmath: Field.henselian, HenselianLocalRing.TFAE
HenselianRing πŸ“–CompData
2 mathmath: instHenselianRingMaximalIdeal, IsAdicComplete.henselianRing

Theorems

NameKindAssumesProvesValidatesDepends On
instHenselianRingMaximalIdeal πŸ“–mathematicalβ€”HenselianRing
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
HenselianLocalRing.toIsLocalRing
β€”HenselianLocalRing.toIsLocalRing
Ideal.jacobson.eq_1
le_sInf_iff
Eq.ge
IsLocalRing.eq_maximalIdeal
Ideal.instIsTwoSided_1
HenselianLocalRing.is_henselian
Mathlib.Tactic.Contrapose.contrapose₁
Ideal.Quotient.eq_zero_iff_mem
IsLocalRing.mem_maximalIdeal
mem_nonunits_iff
not_isUnit_zero
IsDomain.toNontrivial
Ideal.Quotient.isDomain
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
isLocalHom_of_le_jacobson_bot πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommRing.toRing
Bot.bot
Ring.toSemiring
Submodule.instBot
IsLocalHom
HasQuotient.Quotient
Ideal.instHasQuotient
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ideal.Quotient.semiring
RingHom.instFunLike
β€”Ideal.instIsTwoSided_1
Ideal.instIsTwoSidedJacobson
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
Ideal.Quotient.mk_surjective
RingHom.map_one
RingHom.map_mul
Ideal.Quotient.eq
mul_one
sub_add_cancel
Ideal.mem_jacobson_bot

---

← Back to Index