Documentation Verification Report

Finiteness

📁 Source: Mathlib/RingTheory/Ideal/AssociatedPrime/Finiteness.lean

Statistics

MetricCount
DefinitionsIsQuotientEquivQuotientPrime
1
Theoremsmem_associatedPrimes_of_isFractionRing, bot_lt_annihilator_of_disjoint_nonZeroDivisors, nonempty_inter_nonZeroDivisors_of_faithfulSMul, exists_relSeries_isQuotientEquivQuotientPrime, induction_on_isQuotientEquivQuotientPrime, isQuotientEquivQuotientPrime_iff, finite, instFiniteMaximalSpectrumOfIsFractionRing
8
Total9

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_annihilator_of_disjoint_nonZeroDivisors 📖mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Submonoid.instSetLike
nonZeroDivisors
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Bot.bot
Submodule.instBot
Module.annihilator
SetLike.instMembership
Submodule.addCommMonoid
Submodule.module
subset_union_prime_finite
associatedPrimes.finite
Module.Finite.self
Disjoint.subset_compl_right
biUnion_associatedPrimes_eq_compl_nonZeroDivisors
SetLike.lt_iff_le_and_exists
instIsConcreteLE
bot_le
Submodule.mem_annihilator
mul_comm
IsPrime.ne_top
Set.instReflSubset
nonempty_inter_nonZeroDivisors_of_faithfulSMul 📖mathematicalSet.Nonempty
Set
Set.instInter
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Submonoid.instSetLike
nonZeroDivisors
IsScalarTower.right
LT.lt.ne'
bot_lt_annihilator_of_disjoint_nonZeroDivisors
Set.disjoint_iff_inter_eq_empty
Module.annihilator_eq_bot

Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
mem_associatedPrimes_of_isFractionRing 📖mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
associatedPrimes
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
associatedPrimes.finite
Module.Finite.self
Ideal.subset_union_prime_finite
IsAssociatedPrime.isPrime
Set.iUnion_congr_Prop
biUnion_associatedPrimes_eq_compl_nonZeroDivisors
ne_top
Ideal.eq_top_of_isUnit_mem
IsFractionRing.self_iff_nonZeroDivisors_le_isUnit
eq_of_le
Ideal.IsPrime.ne_top

IsNoetherianRing

Theorems

NameKindAssumesProvesValidatesDepends On
exists_relSeries_isQuotientEquivQuotientPrime 📖mathematicalRelSeries.head
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
setOf
Submodule.IsQuotientEquivQuotientPrime
Bot.bot
Submodule.instBot
RelSeries.last
Top.top
Submodule.instTop
WellFoundedGT.induction_top
wellFoundedGT
isNoetherian_of_isNoetherianRing_of_finite
Submodule.Quotient.nontrivial_iff
associatedPrimes.nonempty
Submodule.mkQ_surjective
Ideal.IsPrime.ne_top
Set.instReflSubset
Submodule.isQuotientEquivQuotientPrime_iff
RelSeries.snoc.congr_simp
RelSeries.last_snoc
RelSeries.head_snoc
induction_on_isQuotientEquivQuotientPrime 📖RingHomInvPair.ids
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
isNoetherian_of_finite
Finite.of_fintype
LinearEquiv.injective
Function.surjective_to_subsingleton
Zero.instNonempty
LinearMap.exact_zero_iff_surjective
LinearEquiv.surjective
exists_relSeries_isQuotientEquivQuotientPrime
isNoetherian_submodule'
Unique.instSubsingleton
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
RelSeries.step
LT.lt.trans
Module.Finite.quotient
Submodule.injective_subtype
Submodule.mkQ_surjective
LinearMap.exact_subtype_mkQ

Submodule

Definitions

NameCategoryTheorems
IsQuotientEquivQuotientPrime 📖MathDef
2 mathmath: IsNoetherianRing.exists_relSeries_isQuotientEquivQuotientPrime, isQuotientEquivQuotientPrime_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isQuotientEquivQuotientPrime_iff 📖mathematicalIsQuotientEquivQuotientPrime
Ideal.IsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
colon
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
hasQuotient
CommRing.toRing
Quotient.addCommGroup
Quotient.module
Bot.bot
instBot
Ring.toSemiring
Set
Set.instSingletonSet
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
mkQ
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
span
le_rfl
ker_liftQ_eq_bot
ker_mkQ
RingHomSurjective.ids
range_liftQ
LinearMap.range_comp
map.congr_simp
range_subtype
mkQ_surjective
Ideal.ext
Ideal.instIsTwoSided_1
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Algebra.smul_def
mul_one
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
PrimeSpectrum.isPrime
le_antisymm
map_span
Set.image_singleton
Set.image_congr
sup_comm
comap_map_eq
map_le_iff_le_comap
Ideal.Quotient.span_singleton_one
map_top
LinearEquiv.range
sup_le
span_singleton_le_iff_mem
LE.le.trans_eq
le_sup_left
le_sup_right
mem_span_singleton_self
instIsConcreteLE
SMulMemClass.smul_mem
smulMemClass
RingHomInvPair.ids
LinearMap.ker_eq_bot
mapQ.eq_1
LinearMap.range_eq_top
LinearMap.range_toSpanSingleton
LinearMap.submoduleOf_span_singleton_of_mem
submoduleOf_sup_of_le
submoduleOf_self

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteMaximalSpectrumOfIsFractionRing 📖mathematicalFinite
MaximalSpectrum
CommRing.toCommSemiring
Equiv.finite_iff
Set.finite_coe_iff
Set.Finite.subset
associatedPrimes.finite
Module.Finite.self
Ideal.IsMaximal.mem_associatedPrimes_of_isFractionRing

associatedPrimes

Theorems

NameKindAssumesProvesValidatesDepends On
finite 📖mathematicalSet.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
associatedPrimes
AddCommGroup.toAddCommMonoid
IsNoetherianRing.induction_on_isQuotientEquivQuotientPrime
eq_empty_of_subsingleton
RingHomInvPair.ids
eq_singleton_of_isPrimary
Ideal.IsPrime.isPrimary
PrimeSpectrum.isPrime
LinearEquiv.AssociatedPrimes.eq
Set.Finite.subset
Set.Finite.union
subset_union_of_exact

---

← Back to Index