Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Ideal/Basic.lean

Statistics

MetricCount
DefinitionsequivFinTwo, pi
2
Theoremsadd_pow_add_pred_mem_of_pow_mem, add_pow_add_pred_mem_of_pow_mem_of_commute, add_pow_mem_of_pow_mem_of_le, add_pow_mem_of_pow_mem_of_le_of_commute, bot_lt_of_maximal, instFinite, instIsTwoSidedForallPi, isSimpleOrder, mem_pi, pi_le_pi_iff, pi_span, pow_multiset_sum_mem_span_pow, prod_mem, single_mem_pi, span_pow_eq_top, span_range_pow_eq_top, span_single_eq_top, sum_pow_mem_span_pow, exists_maximal_of_not_isField, exists_not_isUnit_of_not_isField, isField_iff_isSimpleOrder_ideal, isField_iff_maximal_bot, ne_bot_of_isMaximal_of_not_isField, not_isField_iff_exists_ideal_bot_lt_and_lt_top, not_isField_iff_exists_prime, not_isField_of_ne_of_ne
26
Total28

Ideal

Definitions

NameCategoryTheorems
equivFinTwo πŸ“–CompOpβ€”
pi πŸ“–CompOp
6 mathmath: single_mem_pi, instIsTwoSidedForallPi, pi_le_pi_iff, map_evalRingHom_pi, pi_span, mem_pi

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow_add_pred_mem_of_pow_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”add_pow_add_pred_mem_of_pow_mem_of_commute
Commute.all
add_pow_add_pred_mem_of_pow_mem_of_commute πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAddβ€”add_pow_mem_of_pow_mem_of_le_of_commute
le_refl
add_pow_mem_of_pow_mem_of_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”add_pow_mem_of_pow_mem_of_le_of_commute
Commute.all
add_pow_mem_of_pow_mem_of_le_of_commute πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAddβ€”Commute.add_pow
Finset.sum_congr
Submodule.sum_mem
mul_mem_left
Commute.pow_pow
pow_mem_of_pow_mem
bot_lt_of_maximal πŸ“–mathematicalIsField
CommSemiring.toSemiring
Ideal
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
β€”Ne.bot_lt
Ring.ne_bot_of_isMaximal_of_not_isField
instFinite πŸ“–mathematicalβ€”Finite
Ideal
DivisionSemiring.toSemiring
β€”β€”
instIsTwoSidedForallPi πŸ“–mathematicalIsTwoSidedPi.semiring
pi
β€”mul_mem_right
isSimpleOrder πŸ“–mathematicalβ€”IsSimpleOrder
Ideal
DivisionSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CompleteLattice.toBoundedOrder
Submodule.completeLattice
β€”instNontrivial
GroupWithZero.toNontrivial
eq_bot_or_top
mem_pi πŸ“–mathematicalβ€”Ideal
Pi.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
pi
β€”β€”
pi_le_pi_iff πŸ“–mathematicalβ€”Ideal
Pi.semiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
pi
Pi.hasLe
β€”Pi.single_eq_same
single_mem_pi
pi_span πŸ“–mathematicalβ€”pi
span
Set
Set.instSingletonSet
Pi.semiring
β€”ext
pow_multiset_sum_mem_span_pow πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
SetLike.coe
Finset
Finset.instSetLike
Multiset.toFinset
Multiset.map
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Multiset.sum
Multiset.card
β€”Multiset.induction_on
Finset.coe_empty
span_empty
MulZeroClass.zero_mul
zero_add
pow_one
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Multiset.map_cons
Multiset.toFinset_cons
Finset.coe_insert
Multiset.sum_cons
Multiset.card_cons
add_pow
Submodule.sum_mem
mem_span_insert
Submodule.zero_mem
mul_comm
pow_add
add_zero
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
add_mul
Distrib.rightDistribClass
one_mul
add_assoc
add_comm
add_tsub_assoc_of_le
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
mul_assoc
mul_mem_left
prod_mem πŸ“–mathematicalFinset
Finset.instMembership
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Finset.prod
CommSemiring.toCommMonoid
β€”Finset.prod_eq_prod_diff_singleton_mul
mul_mem_left
single_mem_pi πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Pi.semiring
pi
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”eq_or_ne
Pi.single_eq_same
Pi.single_eq_of_ne'
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
span_pow_eq_top πŸ“–mathematicalspan
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”eq_top_iff_one
Set.eq_empty_or_nonempty
Set.image_empty
subset_span
pow_zero
Finsupp.mem_span_iff_linearCombination
span.eq_1
sum_pow_mem_span_pow
span_le
Set.singleton_subset_iff
Subtype.prop
mul_pow
mem_span_singleton
mul_comm
one_pow
Finset.sum_congr
span_range_pow_eq_top πŸ“–mathematicalspan
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.range
Set.Elem
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Set
Set.instMembership
β€”Submodule.mem_span_finite_of_mem_span
eq_top_iff_one
top_unique
LE.le.trans
Eq.ge
span_pow_eq_top
span_le
Finset.le_sup
Finset.mem_attach
pow_add
mul_mem_left
subset_span
span_single_eq_top πŸ“–mathematicalβ€”span
Pi.semiring
Set.range
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
β€”eq_top_iff
Pi.single_induction
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
add_mem
Pi.single_eq_same
mul_one
mul_mem_left
subset_span
sum_pow_mem_span_pow πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
Set.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SetLike.coe
Finset
Finset.instSetLike
Finset.sum
Finset.card
β€”Multiset.map_map
Multiset.map_congr
Multiset.toFinset_map
Finset.val_toFinset
Finset.coe_image
Multiset.card_map
pow_multiset_sum_mem_span_pow

Ring

Theorems

NameKindAssumesProvesValidatesDepends On
exists_maximal_of_not_isField πŸ“–mathematicalIsField
CommSemiring.toSemiring
Ideal.IsMaximalβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
isField_iff_maximal_bot
bot_ne_top
Ideal.instNontrivial
Ideal.maximal_of_no_maximal
exists_not_isUnit_of_not_isField πŸ“–mathematicalIsField
CommSemiring.toSemiring
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_pair_ne
mul_comm
instIsDedekindFiniteMonoid
Mathlib.Tactic.Push.not_forall_eq
isField_iff_isSimpleOrder_ideal πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
IsSimpleOrder
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CompleteLattice.toBoundedOrder
Submodule.completeLattice
β€”subsingleton_or_nontrivial
not_isField_of_subsingleton
false_of_nontrivial_of_subsingleton
IsSimpleOrder.toNontrivial
Unique.instSubsingleton
not_iff_not
not_isField_iff_exists_ideal_bot_lt_and_lt_top
Mathlib.Tactic.Contrapose.contrapose_iff₃
Mathlib.Tactic.Push.not_and_or_eq
Ideal.instNontrivial
IsSimpleOrder.eq_bot_or_eq_top
isField_iff_maximal_bot πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
Ideal.IsMaximal
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.bot_isMaximal
exists_not_isUnit_of_not_isField
Ideal.span_singleton_eq_bot
Ideal.IsMaximal.eq_of_le
Ideal.span_singleton_ne_top
bot_le
ne_bot_of_isMaximal_of_not_isField πŸ“–β€”IsField
CommSemiring.toSemiring
β€”β€”not_isField_iff_exists_ideal_bot_lt_and_lt_top
LT.lt.ne
Ideal.IsMaximal.eq_of_le
bot_le
not_isField_iff_exists_ideal_bot_lt_and_lt_top πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
Ideal
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
Top.top
Submodule.instTop
β€”exists_maximal_of_not_isField
bot_lt_iff_ne_bot
lt_top_iff_ne_top
Ideal.IsMaximal.ne_top
not_isField_of_ne_of_ne
LT.lt.ne'
LT.lt.ne
not_isField_iff_exists_prime πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
Ideal.IsPrime
β€”exists_maximal_of_not_isField
Ideal.IsMaximal.isPrime
not_isField_of_ne_of_ne
Ideal.IsPrime.ne_top
not_isField_of_ne_of_ne πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
Ideal.IsMaximal.eq_of_le
isField_iff_maximal_bot
bot_le

---

← Back to Index