Documentation Verification Report

GoingUp

πŸ“ Source: Mathlib/RingTheory/Ideal/GoingUp.lean

Statistics

MetricCount
Definitions0
Theoremscomap_lt_comap, comap_ne_bot, eq_bot_of_comap_eq_bot, isMaximal_of_isMaximal_comap, comap_lt_comap, comap_ne_bot, eq_bot_of_comap_eq_bot, isMaximal_of_isMaximal_comap, of_isMaximal_liesOver, of_liesOver_isMaximal, under, algebra_isIntegral_of_liesOver, coeff_zero_mem_comap_of_root_mem, coeff_zero_mem_comap_of_root_mem_of_eval_mem, comap_lt_comap_of_integral_mem_sdiff, comap_lt_comap_of_root_mem_sdiff, comap_ne_bot_of_algebraic_mem, comap_ne_bot_of_integral_mem, comap_ne_bot_of_root_mem, eq_bot_of_comap_eq_bot, eq_bot_of_liesOver_bot, exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff, exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem, exists_coeff_ne_zero_mem_comap_of_root_mem, exists_ideal_liesOver_maximal_of_isIntegral, exists_ideal_over_maximal_of_isIntegral, exists_ideal_over_prime_of_isIntegral, exists_ideal_over_prime_of_isIntegral_of_isDomain, exists_ideal_over_prime_of_isIntegral_of_isPrime, exists_maximal_ideal_liesOver_of_isIntegral, exists_nonzero_mem_of_ne_bot, exists_notMem_dvd_algebraMap_of_primesOver_eq_singleton, injective_quotient_le_comap_map, isMaximal_comap_of_isIntegral_of_isMaximal, isMaximal_comap_of_isIntegral_of_isMaximal', isMaximal_of_isIntegral_of_isMaximal_comap, isMaximal_of_isIntegral_of_isMaximal_comap', isMaximal_of_mem_primesOver, map_eq_top_iff, map_eq_top_iff_of_ker_le, mem_of_one_mem, nonempty_primesOver, isMaximal, primesOver_bot, quotient_mk_maps_eq, under_ne_bot
46
Total46

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_zero_mem_comap_of_root_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Polynomial.coeff
β€”coeff_zero_mem_comap_of_root_mem_of_eval_mem
zero_mem
coeff_zero_mem_comap_of_root_mem_of_eval_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.evalβ‚‚
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Polynomial.coeff
β€”RingHom.instRingHomClass
mem_comap
add_mem_iff_right
mul_mem_left
Polynomial.evalβ‚‚_X
Polynomial.evalβ‚‚_mul
Polynomial.evalβ‚‚_C
Polynomial.evalβ‚‚_add
Polynomial.divX_mul_X_add
comap_lt_comap_of_integral_mem_sdiff πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
Set.instSDiff
SetLike.coe
Submodule.setLike
IsIntegral
CommRing.toRing
Preorder.toLT
comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
comap_lt_comap_of_root_mem_sdiff
Polynomial.map_monic_ne_zero
instIsTwoSided_1
IsDomain.toNontrivial
Quotient.isDomain
IsPrime.under
zero_mem
comap_lt_comap_of_root_mem_sdiff πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
Set.instSDiff
SetLike.coe
Submodule.setLike
SetLike.instMembership
Polynomial.evalβ‚‚
Preorder.toLT
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
instIsTwoSided_1
exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff
SetLike.lt_iff_le_and_exists
instIsConcreteLE
comap_mono
comap_ne_bot_of_algebraic_mem πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsAlgebraic
CommRing.toRing
β€”β€”RingHom.instRingHomClass
comap_ne_bot_of_root_mem
comap_ne_bot_of_integral_mem πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsIntegral
CommRing.toRing
β€”β€”comap_ne_bot_of_algebraic_mem
IsIntegral.isAlgebraic
comap_ne_bot_of_root_mem πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”RingHom.instRingHomClass
exists_coeff_ne_zero_mem_comap_of_root_mem
mem_bot
eq_bot_iff
eq_bot_of_comap_eq_bot πŸ“–β€”comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”β€”RingHom.instRingHomClass
eq_bot_iff
zero_mem
comap_ne_bot_of_integral_mem
Algebra.IsIntegral.isIntegral
eq_bot_of_liesOver_bot πŸ“–mathematicalβ€”Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”eq_bot_of_comap_eq_bot
liesOver_iff
exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
Set.instSDiff
SetLike.coe
Submodule.setLike
SetLike.instMembership
Polynomial.evalβ‚‚
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Polynomial.coeff
β€”RingHom.instRingHomClass
instIsTwoSided_1
Submodule.Quotient.mk_eq_zero
mem_map_of_mem
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
Polynomial.evalβ‚‚_map
Polynomial.hom_evalβ‚‚
Quotient.eq_zero_iff_mem
exists_coeff_ne_zero_mem_comap_of_root_mem
Quotient.isDomain
mem_quotient_iff_mem
Polynomial.coeff_map
exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.evalβ‚‚
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Polynomial.coeff
β€”RingHom.instRingHomClass
Polynomial.coeff_add
Polynomial.coeff_C_zero
zero_add
coeff_zero_mem_comap_of_root_mem
Polynomial.evalβ‚‚_X
Polynomial.evalβ‚‚_mul
Polynomial.coeff_mul_X
exists_coeff_ne_zero_mem_comap_of_root_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Polynomial.evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Polynomial.coeff
β€”exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem
mul_eq_zero
IsDomain.to_noZeroDivisors
exists_ideal_liesOver_maximal_of_isIntegral πŸ“–mathematicalβ€”IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
LiesOver
β€”exists_maximal_ideal_liesOver_of_isIntegral
exists_ideal_over_maximal_of_isIntegral πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
algebraMap
IsMaximal
comap
β€”RingHom.instRingHomClass
exists_ideal_over_prime_of_isIntegral
IsMaximal.isPrime'
isMaximal_of_isIntegral_of_isMaximal_comap
exists_ideal_over_prime_of_isIntegral πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
IsPrimeβ€”RingHom.instRingHomClass
exists_ideal_comap_le_prime
exists_ideal_over_prime_of_isIntegral_of_isPrime
LE.le.trans
exists_ideal_over_prime_of_isIntegral_of_isDomain πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
algebraMap
IsPrime
comap
β€”RingHom.instRingHomClass
exists_maximal
IsDomain.toNontrivial
IsLocalization.isDomain_localization
le_nonZeroDivisors_of_noZeroDivisors
IsDomain.to_noZeroDivisors
Localization.isLocalization
isIntegral_localization
isMaximal_comap_of_isIntegral_of_isMaximal
comap_isPrime
IsMaximal.isPrime'
Localization.AtPrime.isLocalRing
comap_comap
IsLocalRing.eq_maximalIdeal
Algebra.mem_algebraMapSubmonoid_of_mem
IsLocalization.map_comp
Localization.AtPrime.comap_maximalIdeal
exists_ideal_over_prime_of_isIntegral_of_isPrime πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
IsPrimeβ€”RingHom.instRingHomClass
instIsTwoSided_1
exists_ideal_over_prime_of_isIntegral_of_isDomain
Quotient.isDomain
Algebra.IsIntegral.quotient
map_isPrime_of_surjective
Quotient.mk_surjective
mk_ker
le_trans
le_of_eq
RingHom.injective_iff_ker_eq_bot
algebraMap_quotient_injective
bot_le
ker_le_comap
comap_isPrime
comap_comap
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
RingHom.ext
comap_map_of_surjective
sup_eq_left
exists_maximal_ideal_liesOver_of_isIntegral πŸ“–mathematicalβ€”IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
LiesOver
β€”exists_ideal_over_maximal_of_isIntegral
RingHom.instRingHomClass
RingHom.injective_iff_ker_eq_bot
FaithfulSMul.algebraMap_injective
exists_nonzero_mem_of_ne_bot πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”RingHom.instRingHomClass
instIsTwoSided_1
Submodule.nonzero_mem_of_bot_lt
bot_lt_iff_ne_bot
Submodule.coe_mem
Submodule.coe_eq_zero
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
Polynomial.map_injective
RingHom.injective_iff_ker_eq_bot
mk_ker
Submodule.eq_bot_iff
mem_comap
exists_notMem_dvd_algebraMap_of_primesOver_eq_singleton πŸ“–mathematicalprimesOver
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
Set
Set.instSingletonSet
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
β€”mul_comm
exists_le_prime_disjoint
Mathlib.Tactic.Push.not_and_eq
Set.subset_compl_iff_disjoint_right
RingHom.instRingHomClass
exists_ideal_over_prime_of_isIntegral_of_isPrime
mem_span_singleton_self
Eq.le
injective_quotient_le_comap_map πŸ“–mathematicalβ€”HasQuotient.Quotient
Polynomial
Ring.toSemiring
CommRing.toRing
Ideal
Polynomial.ring
instHasQuotient
comap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
RingHom.instRingHomClass
Quotient.ring
instIsTwoSided_1
Quotient.instRingQuotient
map
Polynomial.mapRingHom
DFunLike.coe
Polynomial.commRing
Quotient.commRing
quotientMap
le_comap_map
β€”quotientMap_injective'
RingHom.instRingHomClass
instIsTwoSided_1
le_comap_map
le_of_eq
comap_map_of_surjective
Polynomial.map_surjective
Quotient.mk_surjective
le_antisymm
sup_le
le_rfl
polynomial_mem_ideal_of_coeff_mem_ideal
Quotient.eq_zero_iff_mem
Polynomial.coeff_map
Polynomial.ext_iff
mem_bot
mem_comap
le_sup_of_le_left
isMaximal_comap_of_isIntegral_of_isMaximal πŸ“–mathematicalβ€”IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”Quotient.maximal_of_isField
RingHom.instRingHomClass
isField_of_isIntegral_of_isField
instIsTwoSided_1
Algebra.IsIntegral.quotient
algebraMap_quotient_injective
Quotient.maximal_ideal_iff_isField_quotient
isMaximal_comap_of_isIntegral_of_isMaximal' πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
β€”isMaximal_comap_of_isIntegral_of_isMaximal
isMaximal_of_isIntegral_of_isMaximal_comap πŸ“–mathematicalβ€”IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”RingHom.instRingHomClass
comap_eq_top_iff
IsMaximal.out
SetLike.lt_iff_le_and_exists
instIsConcreteLE
comap_lt_comap_of_integral_mem_sdiff
Algebra.IsIntegral.isIntegral
isMaximal_of_isIntegral_of_isMaximal_comap' πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”RingHom.instRingHomClass
isMaximal_of_isIntegral_of_isMaximal_comap
isMaximal_of_mem_primesOver πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
IsMaximalβ€”primesOver.isMaximal
map_eq_top_iff πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.IsIntegral
CommRing.toRing
map
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”map_eq_top_iff_of_ker_le
RingHom.instRingHomClass
RingHom.injective_iff_ker_eq_bot
map_eq_top_iff_of_ker_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
RingHom.IsIntegral
CommRing.toRing
map
Top.top
Submodule.instTop
β€”RingHom.instRingHomClass
Mathlib.Tactic.Contrapose.contrapose₁
exists_le_maximal
exists_ideal_over_maximal_of_isIntegral
LE.le.trans
LT.lt.ne
LE.le.trans_lt
map_le_iff_le_comap
lt_top_iff_ne_top
IsMaximal.ne_top
map_top
mem_of_one_mem πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”Submodule.mem_top
eq_top_iff_one
nonempty_primesOver πŸ“–mathematicalβ€”Set.Elem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOver
β€”RingHom.instRingHomClass
exists_ideal_over_prime_of_isIntegral
under_bot
liesOver_iff
primesOver_bot πŸ“–mathematicalβ€”primesOver
CommRing.toCommSemiring
Bot.bot
Ideal
CommSemiring.toSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instSingletonSet
β€”Set.ext
eq_bot_of_comap_eq_bot
IsDomain.toNontrivial
isPrime_bot
IsDomain.to_noZeroDivisors
bot_liesOver_bot
quotient_mk_maps_eq πŸ“–mathematicalβ€”RingHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instHasQuotient
comap
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
RingHom.instRingHomClass
Quotient.ring
instIsTwoSided_1
Polynomial.ring
Quotient.instRingQuotient
map
Polynomial.mapRingHom
Polynomial.commRing
Quotient.commRing
quotientMap
le_comap_map
β€”RingHom.ext
RingHom.instRingHomClass
instIsTwoSided_1
le_comap_map
Polynomial.map_C
under_ne_bot πŸ“–β€”β€”β€”β€”eq_bot_of_comap_eq_bot

Ideal.IntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
comap_lt_comap πŸ“–mathematicalIdeal
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
Subalgebra.algebra
RingHom.instRingHomClass
β€”Ideal.IsIntegralClosure.comap_lt_comap
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.isIntegralClosure
comap_ne_bot πŸ“–β€”β€”β€”β€”Ideal.IsIntegralClosure.comap_ne_bot
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.isIntegralClosure
instIsDomainSubtypeMemSubalgebraIntegralClosure
eq_bot_of_comap_eq_bot πŸ“–β€”Ideal.comap
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
RingHom
Semiring.toNonAssocSemiring
Subalgebra.toSemiring
RingHom.instFunLike
algebraMap
Subalgebra.algebra
RingHom.instRingHomClass
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”β€”Ideal.IsIntegralClosure.eq_bot_of_comap_eq_bot
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.isIntegralClosure
instIsDomainSubtypeMemSubalgebraIntegralClosure
isMaximal_of_isMaximal_comap πŸ“–mathematicalβ€”Ideal.IsMaximal
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toSemiring
β€”RingHom.instRingHomClass
Ideal.IsIntegralClosure.isMaximal_of_isMaximal_comap
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.isIntegralClosure

Ideal.IsIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
comap_lt_comap πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
SetLike.lt_iff_le_and_exists
instIsConcreteLE
Ideal.comap_lt_comap_of_integral_mem_sdiff
IsIntegralClosure.isIntegral
comap_ne_bot πŸ“–β€”β€”β€”β€”RingHom.instRingHomClass
Submodule.ne_bot_iff
Ideal.comap_ne_bot_of_integral_mem
IsIntegralClosure.isIntegral
eq_bot_of_comap_eq_bot πŸ“–β€”Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
RingHom.instRingHomClass
comap_ne_bot
isMaximal_of_isMaximal_comap πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”RingHom.instRingHomClass
IsIntegralClosure.isIntegral_algebra
Ideal.isMaximal_of_isIntegral_of_isMaximal_comap

Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
of_isMaximal_liesOver πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Ideal.over_def
Ideal.isMaximal_comap_of_isIntegral_of_isMaximal
of_liesOver_isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Ideal.isMaximal_of_isIntegral_of_isMaximal_comap
Ideal.over_def
under πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.under
β€”Ideal.isMaximal_comap_of_isIntegral_of_isMaximal

Ideal.Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
algebra_isIntegral_of_liesOver πŸ“–mathematicalβ€”Algebra.IsIntegral
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
commRing
instRingQuotient
algebraOfLiesOver
β€”Algebra.IsIntegral.tower_top
isScalarTower_of_liesOver
IsScalarTower.left
instIsIntegralQuotientIdeal

Ideal.primesOver

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Set
Set.instMembership
Ideal.primesOver
β€”Ideal.IsMaximal.of_liesOver_isMaximal
liesOver
isPrime

---

← Back to Index