Documentation Verification Report

IdempotentFG

📁 Source: Mathlib/RingTheory/Ideal/IdempotentFG.lean

Statistics

MetricCount
Definitions0
TheoremsisIdempotentElem_iff_eq_bot_or_top, isIdempotentElem_iff_of_fg
2
Total2

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isIdempotentElem_iff_eq_bot_or_top 📖mathematicalFG
CommSemiring.toSemiring
CommRing.toCommSemiring
IsIdempotentElem
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Top.top
Submodule.instTop
IsScalarTower.right
isIdempotentElem_iff_of_fg
span_singleton_one
IsIdempotentElem.iff_eq_zero_or_one
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Submodule.mul_bot
mul_top
instIsTwoSided_1
isIdempotentElem_iff_of_fg 📖mathematicalFG
CommSemiring.toSemiring
CommRing.toCommSemiring
IsIdempotentElem
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.right
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Submodule.span
NonUnitalNonAssocSemiring.toAddCommMonoid
Set
Set.instSingletonSet
IsScalarTower.right
Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul
IsScalarTower.left
smul_eq_mul
Eq.ge
antisymm
instAntisymmLe
mem_span_singleton'
mul_comm
Submodule.span_singleton_le_iff_mem
span_singleton_mul_span_singleton
instIsTwoSided_1
IsIdempotentElem.eq

---

← Back to Index