π Source: Mathlib/RingTheory/Ideal/Int.lean
ringChar_quot
absNorm_under_dvd_absNorm
absNorm_under_eq_sInf
absNorm_under_mem
cast_mem_ideal_iff
ideal_span_isMaximal_of_prime
liesOver_span_absNorm
absNorm_under_prime
ringChar
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Semiring.toNonAssocSemiring
Quotient.semiring
DFunLike.coe
MonoidWithZeroHom
Int.instCommRing
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Int.instNontrivial
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
Int.euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
Int.instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
Int.instIsAddTorsionFree
under
Int.instCommSemiring
Ring.toIntAlgebra
ringChar.eq_iff
charP_iff
instIsTwoSided_1
Quotient.eq_zero_iff_mem
Int.cast_natCast
Int.cast_mem_ideal_iff
instCommRing
Ideal.absNorm
instNontrivial
instIsDomain
euclideanDomain
instAddGroup
instIsAddTorsionFree
Ideal.under
instCommSemiring
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
finite_or_infinite
nsmul_eq_mul
Ideal.instIsTwoSided_1
map_natCast
RingHom.instRingHomClass
MulZeroClass.zero_mul
mul_one
Ideal.absNorm_apply
Submodule.cardQuot_apply
Nat.card_eq_fintype_card
AddGroup.exponent_dvd_card
Nat.card_eq_zero_of_infinite
Ring.toSemiring
InfSet.sInf
Nat.instInfSet
setOf
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Set.eq_empty_of_forall_notMem
cast_natCast
Nat.sInf_empty
le_antisymm
Nat.sInf_mem
Set.nonempty_of_mem
lt_iff_not_ge
Nat.sInf_le
dvd_refl
AddGroupWithOne.toIntCast
Ideal.mem_span_singleton
ideal_span_absNorm_eq_self
Ideal.under_def
Ideal.mem_comap
eq_intCast
Ideal.IsMaximal
instSemiring
Ideal.span
Set
Set.instSingletonSet
Ideal.Quotient.maximal_of_isField
MulEquiv.isField
Field.toIsField
Ideal.LiesOver
Ideal.liesOver_iff
Prime
instMulZeroOneClass
prime_iff_prime_int
Ideal.span_singleton_prime
Iff.not
Ideal.absNorm_eq_zero_iff
Mathlib.Tactic.Contrapose.contraposeβ
Ideal.eq_bot_of_comap_eq_bot
Int.ideal_span_absNorm_eq_self
Ideal.IsPrime.under
---
β Back to Index