Documentation Verification Report

Int

πŸ“ Source: Mathlib/RingTheory/Ideal/Int.lean

Statistics

MetricCount
Definitions0
TheoremsringChar_quot, absNorm_under_dvd_absNorm, absNorm_under_eq_sInf, absNorm_under_mem, cast_mem_ideal_iff, ideal_span_isMaximal_of_prime, liesOver_span_absNorm, absNorm_under_prime
8
Total8

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
ringChar_quot πŸ“–mathematicalβ€”ringChar
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Semiring.toNonAssocSemiring
Quotient.semiring
DFunLike.coe
MonoidWithZeroHom
Int.instCommRing
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Int.instNontrivial
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
Int.euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
Int.instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
Int.instIsAddTorsionFree
under
Int.instCommSemiring
Ring.toIntAlgebra
β€”Int.instNontrivial
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
Int.instIsAddTorsionFree
ringChar.eq_iff
charP_iff
instIsTwoSided_1
Quotient.eq_zero_iff_mem
Int.cast_natCast
Int.cast_mem_ideal_iff

Int

Theorems

NameKindAssumesProvesValidatesDepends On
absNorm_under_dvd_absNorm πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.under
instCommSemiring
Ring.toIntAlgebra
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
β€”finite_or_infinite
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
nsmul_eq_mul
Ideal.instIsTwoSided_1
map_natCast
RingHom.instRingHomClass
MulZeroClass.zero_mul
mul_one
Ideal.absNorm_apply
Submodule.cardQuot_apply
Nat.card_eq_fintype_card
absNorm_under_eq_sInf
AddGroup.exponent_dvd_card
Nat.card_eq_zero_of_infinite
absNorm_under_eq_sInf πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.under
instCommSemiring
Ring.toSemiring
Ring.toIntAlgebra
InfSet.sInf
Nat.instInfSet
setOf
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Set.eq_empty_of_forall_notMem
cast_mem_ideal_iff
cast_natCast
Nat.sInf_empty
absNorm_under_mem
le_antisymm
Nat.sInf_mem
Set.nonempty_of_mem
lt_iff_not_ge
Nat.sInf_le
absNorm_under_mem πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DFunLike.coe
MonoidWithZeroHom
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.under
instCommSemiring
Ring.toIntAlgebra
β€”instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
cast_natCast
cast_mem_ideal_iff
dvd_refl
cast_mem_ideal_iff πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DFunLike.coe
MonoidWithZeroHom
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.under
instCommSemiring
Ring.toIntAlgebra
β€”instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.mem_span_singleton
ideal_span_absNorm_eq_self
RingHom.instRingHomClass
Ideal.under_def
Ideal.mem_comap
eq_intCast
ideal_span_isMaximal_of_prime πŸ“–mathematicalβ€”Ideal.IsMaximal
instSemiring
Ideal.span
Set
Set.instSingletonSet
β€”Ideal.Quotient.maximal_of_isField
MulEquiv.isField
Field.toIsField
liesOver_span_absNorm πŸ“–mathematicalβ€”Ideal.LiesOver
instCommSemiring
Ring.toSemiring
Ring.toIntAlgebra
Ideal.span
CommSemiring.toSemiring
Set
Set.instSingletonSet
DFunLike.coe
MonoidWithZeroHom
Ideal
CommRing.toCommSemiring
instCommRing
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.under
β€”instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
Ideal.liesOver_iff
RingHom.instRingHomClass
Ideal.under_def
ideal_span_absNorm_eq_self

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
absNorm_under_prime πŸ“–mathematicalβ€”Prime
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
Int.instNontrivial
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
Int.euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
Int.instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
Int.instIsAddTorsionFree
Ideal.under
Int.instCommSemiring
Ring.toIntAlgebra
β€”Int.instNontrivial
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
Int.instIsAddTorsionFree
prime_iff_prime_int
Ideal.span_singleton_prime
Iff.not
Ideal.absNorm_eq_zero_iff
Mathlib.Tactic.Contrapose.contraposeβ‚„
Ideal.eq_bot_of_comap_eq_bot
Int.ideal_span_absNorm_eq_self
Ideal.IsPrime.under

---

← Back to Index