π Source: Mathlib/RingTheory/Ideal/KrullsHeightTheorem.lean
exists_finset_card_eq_height_of_isNoetherianRing
exists_spanRank_eq_and_height_eq
finiteHeight_of_isNoetherianRing
height_eq_height_add_of_liesOver_of_hasGoingDown
height_le_card_of_mem_minimalPrimes_span
height_le_card_of_mem_minimalPrimes_span_finset
height_le_height_add_encard_of_subset
height_le_height_add_of_liesOver
height_le_height_add_one_of_mem
height_le_height_add_spanFinrank_of_le
height_le_iff_exists_minimalPrimes
height_le_one_of_isPrincipal_of_mem_minimalPrimes
height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing
height_le_ringKrullDim_quotient_add_encard
height_le_ringKrullDim_quotient_add_one
height_le_spanFinrank
height_le_spanRank
height_le_spanRank_toENat
height_le_spanRank_toENat_of_mem_minimal_primes
map_height_le_one_of_mem_minimalPrimes
mem_minimalPrimes_span_of_mem_minimalPrimes_span_insert
quotient_artinian_of_mem_minimalPrimes_of_isLocalRing
height_le_ringKrullDim_quotient_add_spanFinrank
instFiniteRingKrullDimOfIsNoetherianRingOfIsLocalRing
ringKrullDim_le_ringKrullDim_quotient_add_card
ringKrullDim_le_ringKrullDim_quotient_add_encard
ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
span
SetLike.coe
Finset
Finset.instSetLike
ENat
ENat.instNatCast
Finset.card
height
le_rfl
Submodule.FG.finite_generators
IsNoetherian.noetherian
Set.Finite.coe_toFinset
span.eq_1
Submodule.span_generators
Set.ncard_eq_toFinset_card
Submodule.FG.generators_ncard
le_antisymm
Cardinal.nat_le_ofENat
Submodule.fg_iff_spanRank_eq_spanFinrank
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.spanRank
Cardinal.ofENat
exists_spanRank_le_and_le_height_of_le_height
ENat.coe_toNat_le_self
Cardinal.ofENat_eq_nat
ENat.coe_toNat
height_ne_top
le_trans
Cardinal.ofENat_le_ofENat_of_le
ENat.coe_toNat_eq_self
top_le_iff
height_mono
FiniteHeight
finiteHeight_iff_lt
em
LE.le.trans_lt
ENat.coe_lt_top
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
map
RingHom
RingHom.instFunLike
algebraMap
Quotient.commRing
Quotient.ring
instIsTwoSided_1
exists_ltSeries_length_eq_height
Quotient.instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver
Quotient.isNoetherianRing
RingHom.strictMono_comap_of_surjective
Quotient.mk_surjective
map_le_iff_le_comap
RingHom.instRingHomClass
PrimeSpectrum.comap_asIdeal
map_quotient_self
LiesOver.over
under_def
comap_mono
LTSeries.head_le_last
comap.congr_simp
comap_map_quotientMk
sup_of_le_right
PrimeSpectrum.isPrime
exists_ltSeries_of_hasGoingDown
Nat.cast_add
height_eq_primeHeight
Order.length_le_height
RelSeries.last_smash
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.ncard
Cardinal.mk_fintype
Fintype.card_coe
Submodule.spanRank_span_le_card
Set.instHasSubset
Submodule.setLike
Set.encard
span_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
Submodule.spanFinrank_span_le_encard
subset_span
Set.SurjOn.mono
subset_rfl
Set.instReflSubset
mem_quotient_iff_mem
le_refl
SetLike.mem_coe
Finset.exists_subset_injOn_image_eq_of_surjOn
Finset.coe_union
Finset.coe_image
span_union
map_span
map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes
IsOrderedRing.toZeroLEOneClass
Finset.card_union_le
add_le_add
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.card_image_le
Finset.card_image_of_injOn
SetLike.instMembership
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set.encard_singleton
Submodule.spanFinrank
isPrime_map_quotientMk_of_isPrime
sup_of_le_left
sup_comm
mem_minimalPrimes_sup
Cardinal
Cardinal.instLE
IsPrime.ne_top
mem_minimalPrimes_of_height_eq
Eq.ge
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
OrderRingHom.instRingHomClass
OrderRingHom.toRingHom_eq_coe
Cardinal.toENat_ofENat
OrderRingHom.monotone'
Localization.AtPrime.isLocalRing
IsLocalization.instIsNoetherianRingLocalization
instIsPrincipalMapRingHom
IsLocalization.minimalPrimes_map
Localization.isLocalization
Set.mem_preimage
Localization.AtPrime.comap_maximalIdeal
IsLocalization.height_comap
IsLocalRing.maximalIdeal
height_le_iff
IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
IsLocalization.AtPrime.ringKrullDim_eq_height
WithBot.coe_zero
ringKrullDimZero_iff_ringKrullDim_eq_zero
IsLocalRing.toNontrivial
isArtinianRing_iff_krullDimLE_zero
IsScalarTower.right
isArtinianRing_iff_isNilpotent_maximalIdeal
Localization.AtPrime.map_eq_maximalIdeal
IsLocalRing.quotient_artinian_of_mem_minimalPrimes_of_isLocalRing
map_mono
pow_le_pow_right
IsArtinian.monotone_stabilizes
Submodule.eq_bot_of_le_smul_of_le_jacobson_bot
IsScalarTower.left
smul_eq_mul
pow_succ'
RelEmbedding.map_rel_iff
Submodule.le_of_le_smul_of_le_jacobson_bot
IsLocalRing.jacobson_eq_maximalIdeal
bot_ne_top
instNontrivial
Submodule.mem_sup
Eq.le
comap_map_of_surjective
mk_ker
mem_sup_left
Submodule.add_mem_sup
Submodule.IsPrincipal.mem_iff_eq_smul_generator
mul_comm
mul_mem_mul
unit_mul_mem_iff_mem
IsLocalization.map_units
Submodule.IsPrincipal.principal
Set.singleton_subset_iff
span_singleton_generator
LT.lt.not_ge
LT.lt.le
add_mem_iff_right
RingHom.map_mul
RingHom.map_add
mem_comap
Submodule.IsPrincipal.generator_mem
zero_lt_one
NeZero.charZero_one
WithBot
WithBot.instPreorder
WithBot.some
WithBot.add
ringKrullDim
instHasQuotient_1
Quotient.commSemiring
WithBot.addLeftMono
WithBot.one
map_natCast
Cardinal.ofENat_toENat_le
DFunLike.coe
OrderRingHom
Cardinal.commSemiring
Cardinal.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
nonempty_minimalPrimes
LE.le.trans
iInfβ_le
Submodule.spanRank_toENat_eq_iInf_finset_card
le_iInf_iff
Nat.strong_induction_on
ENat.coe_zero
nonpos_iff_eq_zero
primeHeight_eq_zero_iff
minimalPrimes.eq_1
Nat.instCanonicallyOrderedAdd
Finset.coe_empty
span_empty
lt_irrefl
Set.not_subset
Finset.mem_erase
Finset.insert_erase
radical_eq_sInf
le_sInf_iff
by_contra
LT.lt.trans_le
SetLike.lt_iff_le_and_exists
instIsConcreteLE
le_sup_left
mem_sup_right
mem_span_singleton_self
LE.le.lt_of_not_ge
IsLocalRing.le_maximalIdeal
Set.insert_subset_iff
Finset.coe_insert
exists_subset_radical_span_sup_of_subset_radical_sup
Finset.coe_attach
Set.image_univ
HasSubset.Subset.trans
Set.instIsTransSubset
radical_mono
Set.union_singleton
Finset.card_attach
Finset.card_lt_card
Finset.ssubset_insert
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Eq.trans_le
instIsPrincipalSpanSingletonSet
map_isPrime_of_surjective
le_sup_right
IsPrime.comap
sup_le_iff
ker_le_comap
le_comap_of_map_le
sup_eq_left
Preorder.toLT
Set.instInsert
radical
minimalPrimes_isPrime
IsRadical.radical_le_iff
IsPrime.isRadical
RingHom.ker_eq_comap_bot
LT.lt.ne
WithTop.coe_lt_top
primeHeight_strict_mono
minimal_primes_comap_of_surjective
ENat.lt_one_iff_eq_zero
Ideal.minimalPrimes
maximalIdeal
IsArtinianRing
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Ring.krullDimLE_zero_iff
Ideal.isMaximal_of_isIntegral_of_isMaximal_comap
instIsIntegralQuotientIdeal
Algebra.IsIntegral.of_finite
Module.Finite.self
Ideal.instIsTwoSided_1
Ideal.IsPrime.comap
Minimal.eq_of_le
Set.mem_setOf
Ideal.minimalPrimes.eq_1
Ideal.mk_ker
Ideal.ker_le_comap
le_maximalIdeal
Ideal.IsPrime.ne_top'
maximalIdeal.isMaximal
IsNoetherianRing.isArtinianRing_of_krullDimLE_zero
Ideal.Quotient.isNoetherianRing
Ideal.height
Ideal.Quotient.commSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Ideal.height_le_height_add_spanFinrank_of_le
add_le_add_left
WithBot.addRightMono
Ideal.isPrime_map_quotientMk_of_isPrime
Ideal.height_le_ringKrullDim_of_ne_top
FiniteRingKrullDim
finiteRingKrullDim_iff_ne_bot_and_top
IsLocalRing.maximalIdeal_height_eq_ringKrullDim
WithBot.coe_ne_bot
WithBot.coe_top
Ideal.finiteHeight_iff
Ideal.finiteHeight_of_isNoetherianRing
Ideal.IsMaximal.isPrime'
Ring.jacobson
Ideal.span
Set.encard_coe_eq_coe_finsetCard
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
ringKrullDim_eq_bot_of_subsingleton
Submodule.Quotient.instSubsingletonQuotient
ringKrullDim_le_iff_isMaximal_height_le
Ring.jacobson_le_of_isMaximal
---
β Back to Index