Documentation Verification Report

KrullsHeightTheorem

πŸ“ Source: Mathlib/RingTheory/Ideal/KrullsHeightTheorem.lean

Statistics

MetricCount
Definitions0
Theoremsexists_finset_card_eq_height_of_isNoetherianRing, exists_spanRank_eq_and_height_eq, finiteHeight_of_isNoetherianRing, height_eq_height_add_of_liesOver_of_hasGoingDown, height_le_card_of_mem_minimalPrimes_span, height_le_card_of_mem_minimalPrimes_span_finset, height_le_height_add_encard_of_subset, height_le_height_add_of_liesOver, height_le_height_add_one_of_mem, height_le_height_add_spanFinrank_of_le, height_le_iff_exists_minimalPrimes, height_le_one_of_isPrincipal_of_mem_minimalPrimes, height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing, height_le_ringKrullDim_quotient_add_encard, height_le_ringKrullDim_quotient_add_one, height_le_spanFinrank, height_le_spanRank, height_le_spanRank_toENat, height_le_spanRank_toENat_of_mem_minimal_primes, map_height_le_one_of_mem_minimalPrimes, mem_minimalPrimes_span_of_mem_minimalPrimes_span_insert, quotient_artinian_of_mem_minimalPrimes_of_isLocalRing, height_le_ringKrullDim_quotient_add_spanFinrank, instFiniteRingKrullDimOfIsNoetherianRingOfIsLocalRing, ringKrullDim_le_ringKrullDim_quotient_add_card, ringKrullDim_le_ringKrullDim_quotient_add_encard, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank
27
Total27

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_card_eq_height_of_isNoetherianRing πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
span
SetLike.coe
Finset
Finset.instSetLike
ENat
ENat.instNatCast
Finset.card
height
β€”height_le_iff_exists_minimalPrimes
le_rfl
Submodule.FG.finite_generators
IsNoetherian.noetherian
Set.Finite.coe_toFinset
span.eq_1
Submodule.span_generators
Set.ncard_eq_toFinset_card
Submodule.FG.generators_ncard
le_antisymm
Cardinal.nat_le_ofENat
Submodule.fg_iff_spanRank_eq_spanFinrank
height_le_spanRank_toENat_of_mem_minimal_primes
exists_spanRank_eq_and_height_eq πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.spanRank
Cardinal.ofENat
height
β€”exists_spanRank_le_and_le_height_of_le_height
ENat.coe_toNat_le_self
le_antisymm
Cardinal.ofENat_eq_nat
ENat.coe_toNat
height_ne_top
finiteHeight_of_isNoetherianRing
le_trans
Cardinal.ofENat_le_ofENat_of_le
ENat.coe_toNat_eq_self
height_le_spanRank
top_le_iff
height_mono
finiteHeight_of_isNoetherianRing πŸ“–mathematicalβ€”FiniteHeightβ€”finiteHeight_iff_lt
em
LE.le.trans_lt
height_le_spanFinrank
ENat.coe_lt_top
height_eq_height_add_of_liesOver_of_hasGoingDown πŸ“–mathematicalβ€”height
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instHasQuotient
map
RingHom
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Quotient.commRing
Quotient.ring
instIsTwoSided_1
β€”le_antisymm
instIsTwoSided_1
height_le_height_add_of_liesOver
exists_ltSeries_length_eq_height
finiteHeight_of_isNoetherianRing
Quotient.instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver
Quotient.isNoetherianRing
RingHom.strictMono_comap_of_surjective
Quotient.mk_surjective
map_le_iff_le_comap
RingHom.instRingHomClass
PrimeSpectrum.comap_asIdeal
map_quotient_self
LiesOver.over
under_def
comap_mono
le_trans
LTSeries.head_le_last
comap.congr_simp
comap_map_quotientMk
sup_of_le_right
PrimeSpectrum.isPrime
exists_ltSeries_of_hasGoingDown
Nat.cast_add
height_eq_primeHeight
Order.length_le_height
RelSeries.last_smash
height_le_card_of_mem_minimalPrimes_span πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
span
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
ENat.instNatCast
Set.ncard
β€”Set.ncard_eq_toFinset_card
height_le_card_of_mem_minimalPrimes_span_finset
Set.Finite.coe_toFinset
height_le_card_of_mem_minimalPrimes_span_finset πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
span
SetLike.coe
Finset
Finset.instSetLike
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
ENat.instNatCast
Finset.card
β€”height_le_spanRank_toENat_of_mem_minimal_primes
Cardinal.mk_fintype
Fintype.card_coe
Submodule.spanRank_span_le_card
height_le_height_add_encard_of_subset πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
span
Quotient.commRing
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Set.encard
β€”le_trans
instIsTwoSided_1
height_le_height_add_spanFinrank_of_le
span_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
Submodule.spanFinrank_span_le_encard
height_le_height_add_of_liesOver πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instHasQuotient
map
RingHom
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Quotient.commRing
Quotient.ring
instIsTwoSided_1
β€”instIsTwoSided_1
exists_finset_card_eq_height_of_isNoetherianRing
Quotient.isNoetherianRing
Quotient.instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver
subset_span
Set.SurjOn.mono
subset_rfl
Set.instReflSubset
Quotient.mk_surjective
mem_quotient_iff_mem
RingHom.instRingHomClass
map_le_iff_le_comap
LiesOver.over
le_refl
SetLike.mem_coe
Finset.exists_subset_injOn_image_eq_of_surjOn
height_le_card_of_mem_minimalPrimes_span_finset
Finset.coe_union
Finset.coe_image
span_union
map_span
map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes
span_le
le_trans
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.card_union_le
add_le_add
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.card_image_le
Finset.card_image_of_injOn
height_le_height_add_one_of_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
span
Set
Set.instSingletonSet
Quotient.commRing
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”instIsTwoSided_1
Set.encard_singleton
height_le_height_add_encard_of_subset
height_le_height_add_spanFinrank_of_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
Quotient.commRing
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
ENat.instNatCast
Submodule.spanFinrank
β€”isPrime_map_quotientMk_of_isPrime
instIsTwoSided_1
exists_finset_card_eq_height_of_isNoetherianRing
Quotient.isNoetherianRing
subset_span
Set.SurjOn.mono
subset_rfl
Set.instReflSubset
Quotient.mk_surjective
sup_of_le_left
Finset.exists_subset_injOn_image_eq_of_surjOn
IsNoetherian.noetherian
Submodule.FG.finite_generators
height_le_card_of_mem_minimalPrimes_span_finset
Finset.coe_union
Set.Finite.coe_toFinset
span_union
sup_comm
span.eq_1
Submodule.span_generators
mem_minimalPrimes_sup
map_span
RingHom.instRingHomClass
Finset.coe_image
le_trans
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Set.ncard_eq_toFinset_card
Submodule.FG.generators_ncard
height_le_iff_exists_minimalPrimes πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
Cardinal
Cardinal.instLE
Submodule.spanRank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Cardinal.ofENat
β€”exists_spanRank_eq_and_height_eq
IsPrime.ne_top
mem_minimalPrimes_of_height_eq
finiteHeight_of_isNoetherianRing
Eq.ge
le_trans
height_le_spanRank_toENat_of_mem_minimal_primes
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
OrderRingHom.instRingHomClass
OrderRingHom.toRingHom_eq_coe
Cardinal.toENat_ofENat
OrderRingHom.monotone'
height_le_one_of_isPrincipal_of_mem_minimalPrimes πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”Localization.AtPrime.isLocalRing
height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing
IsLocalization.instIsNoetherianRingLocalization
instIsPrincipalMapRingHom
RingHom.instRingHomClass
IsLocalization.minimalPrimes_map
Localization.isLocalization
Set.mem_preimage
Localization.AtPrime.comap_maximalIdeal
IsLocalization.height_comap
height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
IsLocalRing.maximalIdeal
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”height_le_iff
IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
IsLocalization.AtPrime.ringKrullDim_eq_height
Localization.isLocalization
WithBot.coe_zero
ringKrullDimZero_iff_ringKrullDim_eq_zero
IsLocalRing.toNontrivial
Localization.AtPrime.isLocalRing
isArtinianRing_iff_krullDimLE_zero
IsLocalization.instIsNoetherianRingLocalization
IsScalarTower.right
isArtinianRing_iff_isNilpotent_maximalIdeal
Localization.AtPrime.map_eq_maximalIdeal
IsLocalRing.quotient_artinian_of_mem_minimalPrimes_of_isLocalRing
instIsTwoSided_1
RingHom.instRingHomClass
map_mono
comap_mono
pow_le_pow_right
IsArtinian.monotone_stabilizes
Submodule.eq_bot_of_le_smul_of_le_jacobson_bot
IsNoetherian.noetherian
IsScalarTower.left
smul_eq_mul
pow_succ'
RelEmbedding.map_rel_iff
Submodule.le_of_le_smul_of_le_jacobson_bot
IsLocalRing.jacobson_eq_maximalIdeal
bot_ne_top
instNontrivial
Submodule.mem_sup
Eq.le
comap_map_of_surjective
Quotient.mk_surjective
mk_ker
mem_sup_left
Submodule.add_mem_sup
Submodule.IsPrincipal.mem_iff_eq_smul_generator
mul_comm
mul_mem_mul
unit_mul_mem_iff_mem
IsLocalization.map_units
Submodule.IsPrincipal.principal
Set.singleton_subset_iff
span_le
span_singleton_generator
LT.lt.not_ge
LT.lt.le
add_mem_iff_right
RingHom.map_mul
RingHom.map_add
mem_comap
Submodule.IsPrincipal.generator_mem
le_refl
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
height_le_ringKrullDim_quotient_add_encard πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.some
height
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
ringKrullDim
HasQuotient.Quotient
instHasQuotient_1
span
Quotient.commSemiring
Set.encard
β€”le_trans
height_le_ringKrullDim_quotient_add_spanFinrank
add_le_add_right
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
Submodule.spanFinrank_span_le_encard
height_le_ringKrullDim_quotient_add_one πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.some
height
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
ringKrullDim
HasQuotient.Quotient
instHasQuotient_1
span
Set
Set.instSingletonSet
Quotient.commSemiring
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Set.encard_singleton
height_le_ringKrullDim_quotient_add_encard
height_le_spanFinrank πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
ENat.instNatCast
Submodule.spanFinrank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Submodule.fg_iff_spanRank_eq_spanFinrank
IsNoetherian.noetherian
map_natCast
OrderRingHom.instRingHomClass
height_le_spanRank_toENat
height_le_spanRank πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.ofENat
height
Submodule.spanRank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”height_le_spanRank_toENat
Cardinal.ofENat_toENat_le
height_le_spanRank_toENat πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
Submodule.spanRank
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”nonempty_minimalPrimes
LE.le.trans
iInfβ‚‚_le
height_eq_primeHeight
height_le_spanRank_toENat_of_mem_minimal_primes
height_le_spanRank_toENat_of_mem_minimal_primes πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
Cardinal.commSemiring
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
Submodule.spanRank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”Submodule.spanRank_toENat_eq_iInf_finset_card
le_iInf_iff
Nat.strong_induction_on
Eq.le
ENat.coe_zero
nonpos_iff_eq_zero
height_eq_primeHeight
primeHeight_eq_zero_iff
minimalPrimes.eq_1
Nat.instCanonicallyOrderedAdd
Finset.coe_empty
span_empty
span_le
lt_irrefl
LE.le.trans_lt
LT.lt.le
Set.not_subset
Finset.mem_erase
Finset.insert_erase
radical_eq_sInf
le_sInf_iff
by_contra
LT.lt.trans_le
SetLike.lt_iff_le_and_exists
instIsConcreteLE
le_sup_left
mem_sup_right
mem_span_singleton_self
LE.le.lt_of_not_ge
IsLocalRing.le_maximalIdeal
IsPrime.ne_top
LE.le.trans
Set.insert_subset_iff
Finset.coe_insert
exists_subset_radical_span_sup_of_subset_radical_sup
Finset.coe_image
Finset.coe_attach
Set.image_univ
mem_minimalPrimes_span_of_mem_minimalPrimes_span_insert
HasSubset.Subset.trans
Set.instIsTransSubset
radical_mono
Set.union_singleton
span_union
le_refl
Finset.card_image_le
Finset.card_attach
Finset.card_lt_card
Finset.ssubset_insert
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
RingHom.instRingHomClass
Localization.AtPrime.isLocalRing
Localization.AtPrime.comap_maximalIdeal
IsLocalization.height_comap
Localization.isLocalization
IsLocalization.instIsNoetherianRingLocalization
map_span
IsLocalization.minimalPrimes_map
Set.mem_preimage
IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
map_height_le_one_of_mem_minimalPrimes πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
minimalPrimes
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
span
Set.instSingletonSet
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
height
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
Quotient.commRing
map
RingHom
Semiring.toNonAssocSemiring
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCommSemiringENat
β€”instIsTwoSided_1
RingHom.instRingHomClass
Eq.trans_le
mk_ker
LE.le.trans
le_sup_left
height_le_one_of_isPrincipal_of_mem_minimalPrimes
Quotient.isNoetherianRing
instIsPrincipalMapRingHom
instIsPrincipalSpanSingletonSet
map_isPrime_of_surjective
Quotient.mk_surjective
map_mono
le_sup_right
map_le_iff_le_comap
IsPrime.comap
sup_le_iff
ker_le_comap
le_comap_of_map_le
comap_mono
Eq.le
comap_map_of_surjective
sup_eq_left
mem_minimalPrimes_span_of_mem_minimalPrimes_span_insert πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
minimalPrimes
span
Set.instInsert
Set.instHasSubset
SetLike.coe
Submodule.setLike
radical
β€”β€”instIsTwoSided_1
Quotient.mk_surjective
span_le
LE.le.trans
LT.lt.le
minimalPrimes_isPrime
map_isPrime_of_surjective
RingHom.instRingHomClass
mk_ker
height_le_one_of_isPrincipal_of_mem_minimalPrimes
Quotient.isNoetherianRing
instIsPrincipalMapRingHom
instIsPrincipalSpanSingletonSet
map_mono
Set.singleton_subset_iff
subset_span
map_le_iff_le_comap
IsPrime.comap
Set.insert_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
IsRadical.radical_le_iff
IsPrime.isRadical
Eq.trans_le
ker_le_comap
sup_eq_left
RingHom.ker_eq_comap_bot
comap_map_of_surjective
comap_mono
LE.le.lt_of_not_ge
LT.lt.not_ge
LT.lt.ne
LE.le.trans_lt
WithTop.coe_lt_top
LT.lt.trans_le
primeHeight_strict_mono
height_eq_primeHeight
minimal_primes_comap_of_surjective
primeHeight_eq_zero_iff
ENat.lt_one_iff_eq_zero

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
quotient_artinian_of_mem_minimalPrimes_of_isLocalRing πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
Ideal.minimalPrimes
maximalIdeal
IsArtinianRing
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
β€”Ring.krullDimLE_zero_iff
Ideal.isMaximal_of_isIntegral_of_isMaximal_comap
instIsIntegralQuotientIdeal
Algebra.IsIntegral.of_finite
Module.Finite.self
RingHom.instRingHomClass
Ideal.instIsTwoSided_1
Ideal.IsPrime.comap
Minimal.eq_of_le
Set.mem_setOf
Ideal.minimalPrimes.eq_1
LE.le.trans
Ideal.mk_ker
Ideal.ker_le_comap
le_maximalIdeal
Ideal.IsPrime.ne_top'
maximalIdeal.isMaximal
IsNoetherianRing.isArtinianRing_of_krullDimLE_zero
Ideal.Quotient.isNoetherianRing

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
height_le_ringKrullDim_quotient_add_spanFinrank πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
WithBot
ENat
WithBot.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.some
Ideal.height
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
ringKrullDim
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.Quotient.commSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Submodule.spanFinrank
β€”Ideal.instIsTwoSided_1
Ideal.height_le_height_add_spanFinrank_of_le
add_le_add_left
WithBot.addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
Ideal.isPrime_map_quotientMk_of_isPrime
Ideal.height_le_ringKrullDim_of_ne_top
Ideal.IsPrime.ne_top'
instFiniteRingKrullDimOfIsNoetherianRingOfIsLocalRing πŸ“–mathematicalβ€”FiniteRingKrullDim
CommRing.toCommSemiring
β€”finiteRingKrullDim_iff_ne_bot_and_top
IsLocalRing.maximalIdeal_height_eq_ringKrullDim
WithBot.coe_ne_bot
WithBot.coe_top
Ideal.finiteHeight_iff
Ideal.finiteHeight_of_isNoetherianRing
Ideal.IsPrime.ne_top'
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
ringKrullDim_le_ringKrullDim_quotient_add_card πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Ideal
Ring.toSemiring
CommRing.toRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ring.jacobson
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
CommRing.toCommSemiring
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
CommSemiring.toSemiring
instCommSemiringENat
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.span
Ideal.Quotient.commSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
β€”Set.encard_coe_eq_coe_finsetCard
ringKrullDim_le_ringKrullDim_quotient_add_encard
ringKrullDim_le_ringKrullDim_quotient_add_encard πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Ideal
Ring.toSemiring
CommRing.toRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ring.jacobson
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
CommRing.toCommSemiring
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
CommSemiring.toSemiring
instCommSemiringENat
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.span
Ideal.Quotient.commSemiring
WithBot.some
Set.encard
β€”le_trans
ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank
add_le_add_right
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
Submodule.spanFinrank_span_le_encard
ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ring.jacobson
CommRing.toRing
WithBot
ENat
WithBot.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.Quotient.commSemiring
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Submodule.spanFinrank
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
ringKrullDim_eq_bot_of_subsingleton
Submodule.Quotient.instSubsingletonQuotient
ringKrullDim_le_iff_isMaximal_height_le
height_le_ringKrullDim_quotient_add_spanFinrank
Ideal.IsMaximal.isPrime'
le_trans
Ring.jacobson_le_of_isMaximal

---

← Back to Index