Documentation Verification Report

Lattice

πŸ“ Source: Mathlib/RingTheory/Ideal/Lattice.lean

Statistics

MetricCount
Definitions0
Theoremseq_bot_or_top, eq_top_iff_one, eq_top_of_isUnit_mem, eq_top_of_unit_mem, instIsTwoSidedBot, instIsTwoSidedIInf, instIsTwoSidedTop, mem_bot, mem_iInf, mem_iSup_of_mem, mem_inf, mem_sInf, mem_sSup_of_mem, mem_sup_left, mem_sup_right, ne_top_iff_one
16
Total16

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_or_top πŸ“–mathematicalβ€”Bot.bot
Ideal
DivisionSemiring.toSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Top.top
Submodule.instTop
β€”ne_top_iff_one
eq_bot_iff
inv_mul_cancelβ‚€
mul_mem_left
eq_top_iff_one πŸ“–mathematicalβ€”Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”eq_top_of_unit_mem
mul_one
eq_top_of_isUnit_mem πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Top.top
Submodule.instTop
β€”IsUnit.exists_left_inv
eq_top_of_unit_mem
eq_top_of_unit_mem πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Top.top
Submodule.instTop
β€”eq_top_iff
mul_mem_left
mul_assoc
mul_one
instIsTwoSidedBot πŸ“–mathematicalβ€”IsTwoSided
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”MulZeroClass.zero_mul
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
instIsTwoSidedIInf πŸ“–mathematicalIsTwoSidediInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Submodule.mem_iInf
mul_mem_right
instIsTwoSidedTop πŸ“–mathematicalβ€”IsTwoSided
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
mem_bot πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Submodule.mem_bot
mem_iInf πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iInf
Submodule.instInfSet
β€”Submodule.mem_iInf
mem_iSup_of_mem πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”le_iSup
mem_inf πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instMin
β€”β€”
mem_sInf πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
InfSet.sInf
Submodule.instInfSet
β€”iInf_pos
mem_sSup_of_mem πŸ“–mathematicalIdeal
Set
Set.instMembership
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”le_sSup
mem_sup_left πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”le_sup_left
mem_sup_right πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”le_sup_right
ne_top_iff_one πŸ“–mathematicalβ€”Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”eq_top_iff_one

---

← Back to Index