comap 📖 | CompOp | 189 mathmath: comap_fiberIsoOfBijectiveResidueField_apply, comap_bot_le_of_injective, exists_comap_galRestrict_eq, comap_comapₐ, IsLocalization.minimalPrimes_map, le_comap_of_map_le, comap_inf, ramificationIdx_comap_eq, RingEquiv.idealComapOrderIso_apply, algebraMap_quotient_injective, Localization.AtPrime.mapPiEvalRingHom_bijective, coeff_zero_mem_comap_of_root_mem_of_eval_mem, comap_jacobson_of_surjective, exists_comap_eq_of_mem_minimalPrimes_of_injective, comap_cotangentIdeal, comap_symm, inertiaDeg_comap_eq, comap_map_eq_self_of_faithfullyFlat, map_mk_comap_factor, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, AlgebraicGeometry.Scheme.IdealSheafData.ideal_le_comap_ideal, IsLocalization.AtPrime.comap_map_eq_map, comap_finsetInf, comap_isMaximal_of_equiv, comap_map_eq_self_iff_of_isPrime, Module.associatedPrimes.preimage_comap_associatedPrimes_eq_associatedPrimes_of_isLocalizedModule, comap_idₐ, comap_iInf, IsLocalization.comap_map_of_isPrime_disjoint, comap_le_map_of_inverse, AlgebraicGeometry.stalkwise_SpecMap_iff, injective_quotient_le_comap_map, comap_of_equiv, AlgebraicGeometry.Scheme.ker_ideal_of_isPullback_of_isOpenImmersion, Localization.AtPrime.eq_maximalIdeal_iff_comap_eq, AlgebraicGeometry.Scheme.IdealSheafData.ideal_map, RingHom.comap_ker, map_inf_comap_of_surjective, IsLocalization.isMaximal_iff_isMaximal_disjoint, map_le_comap_of_inv_on, comap_sInf', relNorm_le_comap, map_mk_comap_factorPow, Module.comap_annihilator, comap_eq_top_iff, PrimeSpectrum.specComap_asIdeal, AddValuation.comap_supp, disjoint_map_primeCompl_iff_comap_le, Polynomial.map_under_lt_comap_of_weaklyQuasiFiniteAt, AlgHom.comap_ker, IsMaximal.comap_bijective, comp_quotientMap_eq_of_comp_eq, Valuation.HasExtension.maximalIdeal_comap_algebraMap_eq_maximalIdeal, IsLocalization.AtPrime.comap_maximalIdeal, IsPrime.comap, IsMaximal.comap_piEvalRingHom, comap_isMaximal_of_surjective, IsLocalization.isPrime_iff_isPrime_disjoint, Localization.localRingHom_id, IsLocalization.bot_lt_comap_prime, IsLocalization.map_comap, IsLocalization.AtPrime.liesOver_comap_of_liesOver, AlgebraicGeometry.Scheme.IdealSheafData.ideal_comap_of_isOpenImmersion, AlgHom.IsArithFrobAt.comap_eq, RingOfIntegers.not_dvd_exponent_iff, Localization.AtPrime.mapPiEvalRingHom_comp_algebraMap, comap_bot_of_injective, Localization.AtPrime.comap_maximalIdeal, IsLocalization.minimalPrimes_comap, image_comap_zeroLocus_eq_zeroLocus_comap, Valuation.comap_supp, IsIntegralClosure.comap_lt_comap, PrimeSpectrum.sigmaToPi_asIdeal, le_comap_of_ramificationIdx_ne_zero, comap_mono, Algebra.WeaklyQuasiFiniteAt.comap_algEquiv, comap_sInf, AlgHom.IsArithFrobAt.le_comap, map_le_comap_of_inverse, exists_ideal_over_prime_of_isIntegral_of_isDomain, comap_le_comap_iff_of_surjective, Polynomial.isMaximal_comap_C_of_isJacobsonRing, exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff, map_sup_comap_of_surjective, RingHom.surjective_localRingHom_of_surjective, IsLocalization.isLocalization_isLocalization_atPrime_isLocalization, PrimeSpectrum.mem_range_comap_iff, comap_liesOver, RingEquiv.height_comap, comap_map_quotientMk, minimalPrimes_eq_comap, comap_surjective_of_faithfullyFlat, Polynomial.isMaximal_comap_C_of_isMaximal, map_iSup_comap_of_surjective, ker_le_comap, pointwise_smul_eq_comap, map_le_iff_le_comap, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, comap_map_of_surjective, under_def, coe_comap, comap_map_mk, PrimeSpectrum.closure_image_comap_zeroLocus, comap_lt_comap_of_integral_mem_sdiff, AlgebraicGeometry.stalkwise_Spec_map_iff, comap_map_of_bijective, isMaximal_comap_of_isIntegral_of_isMaximal, RingHom.IsIntegral.quotient, comap_map_eq_self_of_isMaximal, IsLocalization.disjoint_comap_iff, IsPRadical.comap_pNilradical, RingHom.ker_eq_comap_bot, IntegralClosure.comap_lt_comap, map_comap_of_equiv, map_symm, comap_map_comap, minimal_primes_comap_of_surjective, Algebra.Generators.ker_comp_eq_sup, le_comap_map, comap_minimalPrimes_eq_of_surjective, map_comap_eq_self_of_equiv, IsRadical.comap, comap_le_map_of_inv_on, IsLocalization.AtPrime.comap_map_of_isMaximal, le_comap_pow, isMaximal_comap_iff_of_bijective, IsLocalization.comap_map_of_isPrimary_disjoint, PrimeSpectrum.comap_asIdeal, map_iInf_comap_of_surjective, IsDedekindDomain.primesOverEquivPrimesOver_symm_apply, image_specComap_zeroLocus_eq_zeroLocus_comap, comap_isPrime, exists_coeff_ne_zero_mem_comap_of_root_mem, minimalPrimes_comap_subset, spanNorm_le_comap, exists_ideal_over_maximal_of_isIntegral, Polynomial.map_under_lt_comap_of_quasiFiniteAt, span_singleton_absNorm, map_comap_natCastRingHom_int, comap_top, quotientMap_injective, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, Localization.le_comap_primeCompl_iff, idealFactorsFunOfQuotHom_coe_coe, IsLocalization.isLocalization_atPrime_localization_atPrime, IsPrimary.comap, Algebra.IsIntegral.quotient, map_comap_map, le_comap_sup, comap_map_of_surjective', comap_fiberIsoOfBijectiveResidueField_symm, AlgebraicGeometry.Scheme.IdealSheafData.ker_glueDataObjι_appTop, map_comap_le, CharP.quotient_iff_le_ker_natCast, comap_radical, comap_coe, quotient_mk_maps_eq, IsLocalization.ideal_eq_iInf_comap_map_away, isIntegral_quotientMap_iff, coeff_zero_mem_comap_of_root_mem, IsLocalization.orderIsoOfPrime_apply_coe, IsLocalization.primeHeight_comap, Ring.le_comap_jacobson, mem_comap, le_comap_mul, exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem, Algebra.QuasiFiniteAt.comap_algEquiv, RingHom.surjectiveOnStalks_iff_forall_maximal, IsLocalRing.local_hom_TFAE, instIsTwoSidedComap, AlgebraicGeometry.Scheme.IdealSheafData.ideal_map_of_isAffineHom, isMaximal_comap_of_isIntegral_of_isMaximal', comap_injective_of_surjective, map_comap_of_surjective, comap_id, comap_eq_of_scalar_tower_quotient, AlgebraicGeometry.Scheme.localRingHom_comp_stalkIso_apply, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, comap_lt_comap_of_root_mem_sdiff, IsLocalization.height_comap, gc_map_comap, Localization.AtPrime.mapPiEvalRingHom_algebraMap_apply, comap_jacobson, relNorm_comap_algEquiv, comap_le_iff_le_map, RingHom.surjective_localRingHom_iff, le_comap_pow_ramificationIdx, comap_comap, Polynomial.isIntegral_isLocalization_polynomial_quotient
|
map 📖 | CompOp | 340 mathmath: Polynomial.not_ker_le_map_C_of_surjective_of_quasiFiniteAt, IsDedekindDomain.differentIdeal_dvd_map_differentIdeal, Polynomial.ker_mapRingHom, IsLocalization.map_radical, Algebra.idealMap_eq_ofEq_comp_toLocalized₀, DoubleQuot.liftSupQuotQuotMkₐ_toRingHom, IsDedekindDomain.HeightOneSpectrum.equivPrimesOver_apply, IsLocalization.AtPrime.liesOver_map_of_liesOver, IsLocalization.minimalPrimes_map, map_eq_top_iff_of_ker_le, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_apply_mk, NumberField.isCoprime_differentIdeal_of_isCoprime_discr, map_ofList, differentIdeal_eq_differentIdeal_mul_differentIdeal, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_X_mem, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, exists_mem_span_singleton_map_residueField_eq, smul_top_eq_map, DoubleQuot.coe_quotQuotEquivQuotOfLEₐ_symm, MvPolynomial.ker_map, IsMaximal.map_bijective, coe_smul_primesOver_mk_eq_map_galRestrict, DividedPowers.IsDPMorphism.ideal_comp, Polynomial.fiberEquivQuotient_tmul, map_fst_prod, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_isPrime, comap_symm, DoubleQuot.coe_quotQuotMkₐ, Submodule.IsPrincipal.map_ringHom, IsLocalRing.finrank_quotient_map, comap_map_eq_self_of_faithfullyFlat, quotient_map_C_eq_zero, map_mk_comap_factor, PowerBasis.quotientEquivQuotientMinpolyMap_apply, Factors.fact_ramificationIdx_neZero, map_spanIntNorm, QuotientMapQuotient.isNoetherian, IsLocalization.AtPrime.comap_map_eq_map, DoubleQuot.quotQuotEquivQuotOfLEₐ_symm_toRingEquiv, map_under_le_under_map, height_eq_height_add_of_liesOver_of_hasGoingDown, Quotient.tower_quotient_map_quotient, map_eq_top_or_isMaximal_of_surjective, DoubleQuot.quotQuotEquivComm_symmₐ, liesOver_iff_dvd_map, FractionalIdeal.extendedHomₐ_coeIdeal_eq_map, comap_map_eq_self_iff_of_isPrime, spanIntNorm_localization, isPrime_map_of_isLocalizationAtPrime, jacobson_bot_polynomial_le_sInf_map_maximal, mem_map_of_mem, Quotient.instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, IsLocalRing.basisQuotient_repr, Algebra.FormallyUnramified.iff_map_maximalIdeal_eq, IsLocalization.comap_map_of_isPrime_disjoint, map_mul, FG.map, comap_le_map_of_inverse, IsLocalization.AtPrime.inertiaDeg_map_eq_inertiaDeg, injective_quotient_le_comap_map, Quotient.algebraMap_quotient_map_quotient, DoubleQuot.quotQuotEquivComm_comp_quotQuotMk, DoubleQuot.quotQuotEquivComm_quotQuotMk, Algebra.Generators.map_toComp_ker, map_id, powQuotSuccInclusion_apply_coe, map_inf_comap_of_surjective, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, IsLocalization.mapFrameHom_apply, IsLocalization.map_inf, DoubleQuot.quotQuotToQuotSupₐ_toRingHom, AlgebraicGeometry.IsAffineOpen.ideal_le_iff, Algebra.Generators.map_ofComp_ker, IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count, PowerSeries.map_constantCoeff_le_self_of_X_mem, map_relNorm, map_le_comap_of_inv_on, localized'_eq_map, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_symm_apply_mk, IsLocalization.AtPrime.exists_algebraMap_quot_eq_of_mem_quot, map_includeRight_eq, Algebra.FormallyUnramified.isField_quotient_map_maximalIdeal, DividedPowers.isSubDPIdeal_map, map_mk_comap_factorPow, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, map_mk_eq_bot_of_le, Algebra.TensorProduct.map_ker, height_le_height_add_of_liesOver, height_le_height_add_one_of_mem, Polynomial.map_under_lt_comap_of_weaklyQuasiFiniteAt, MvPolynomial.quotient_map_C_eq_zero, Polynomial.height_map_C, IsMaximal.map_of_surjective_of_ker_le, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, under_map_of_isLocalizationAtPrime, map_span, Factors.isScalarTower, DividedPowers.isDPMorphism_iff, IsLocalization.algebraMap_mem_map_algebraMap_iff, IsDedekindDomain.primesOverEquivPrimesOver_apply, quotientToQuotientRangePowQuotSucc_mk, mem_map_of_equiv, AdjoinRoot.quotEquivQuotMap_apply, le_pow_ramificationIdx, IsLocalization.height_map_of_disjoint, DoubleQuot.quotQuotEquivQuotOfLE_comp_quotQuotMkₐ, map_radical_of_surjective, mem_quotient_iff_mem, le_map_of_comap_le_of_surjective, IsLocalization.map_comap, IsHausdorff.map_algebraMap_iff, FractionalIdeal.extended_coeIdeal_eq_map, DoubleQuot.ker_quotQuotMk, map_eq_bot_iff_of_injective, DoubleQuot.coe_quotQuotEquivQuotSupₐ, LocalSubring.map_maximalIdeal_eq_top_of_isMax, isPrime_map_quotientMk_of_isPrime, ramificationIdx_map_eq, symm_apply_mem_of_equiv_iff, map_evalRingHom_pi, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal, IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime, Algebra.isUnramifiedAt_iff_map_eq, relNorm_algebraMap', IsLocalization.isPrime_of_isPrime_disjoint, map_quotient_self, IsLocalization.mk'_mem_map_algebraMap_iff, spanRank_map_le, spanFinrank_map_le_of_fg, quotAdjoinEquivQuotMap_apply_mk, PowerSeries.spanFinrank_eq_spanFinrank_map_constantCoeff_of_X_notMem_of_fg_of_isPrime, quotientToQuotientRangePowQuotSucc_surjective, localized₀_eq_restrictScalars_map, RingEquiv.idealComapOrderIso_symm_apply, Valuation.supp_quot, ideal_prod_eq, map_snd_prod, map_le_comap_of_inverse, DoubleQuot.coe_quotQuotEquivQuotSupₐ_symm, relNorm_algebraMap, Rat.HeightOneSpectrum.natGenerator_dvd_iff, finrank_quotient_map, Algebra.Generators.comp_localizationAway_ker, MvPolynomial.mem_map_C_iff, map_sup_comap_of_surjective, map_radical_le, map_bot, DoubleQuot.quotQuotMkₐ_toRingHom, ker_quotient_lift, PrimeSpectrum.mem_range_comap_iff, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mkₐ, map_sup, AdjoinRoot.quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, comap_map_quotientMk, DividedPowers.DPMorphism.ideal_comp, DividedPowers.isDPMorphism_def, map_eq_top_iff, IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply, map_iSup_comap_of_surjective, Quotient.factor_ker, map_le_iff_le_comap, IsLocalization.AtPrime.map_eq_maximalIdeal, DoubleQuot.ker_quotLeftToQuotSup, comap_map_of_surjective, Factors.liesOver, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, Polynomial.contentIdeal_map_eq_map_contentIdeal, IsLocalization.AtPrime.isMaximal_map, KummerDedekind.Ideal.irreducible_map_of_irreducible_minpoly, comap_map_mk, Rat.HeightOneSpectrum.span_natGenerator, Polynomial.not_ker_le_map_C_of_surjective_of_weaklyQuasiFiniteAt, isPrime_map_C_of_isPrime, DoubleQuot.coe_quotQuotEquivQuotOfLEₐ, apply_mem_of_equiv_iff, quotientToQuotientRangePowQuotSucc_injective, Algebra.idealMap_isLocalizedModule, minimalPrimes_map_of_surjective, AlgHom.coe_ideal_map, AlgebraicGeometry.Scheme.IdealSheafData.ofIdealTop_ideal, apply_coe_mem_map, mem_map_C_iff, PowerSeries.fg_iff_of_isPrime, MvPolynomial.quotientEquivQuotientMvPolynomial_leftInverse, comap_map_of_bijective, Algebra.trace_quotient_mk, RingEquiv.height_map, polynomialQuotientEquivQuotientPolynomial_symm_mk, map_isPrime_of_equiv, map_of_equiv, Polynomial.IsWeaklyEisensteinAt.pow_natDegree_le_of_aeval_zero_of_monic_mem_map, IsLocalization.orderIsoOfPrime_symm_apply_coe, map_map, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_symm_tmul, map_eq_submodule_map, MvPolynomial.ker_mapAlgHom, comap_map_eq_self_of_isMaximal, IsLocalRing.quotient_span_eq_top_iff_span_eq_top, Factors.finrank_pow_ramificationIdx, DividedPowers.Quotient.isDPMorphism, DoubleQuot.quotQuotEquivQuotOfLEₐ_comp_mkₐ, Algebra.weaklyQuasiFiniteAt_iff, rank_pow_quot_aux, map_comap_of_equiv, smul_restrictScalars, mem_primesOver_iff_mem_normalizedFactors, map_sInf, map_symm, coe_smul_primesOver_eq_map_galRestrict, map_algebraMap_eq_finset_prod_pow, rank_pow_quot, comap_map_comap, map_height_le_one_of_mem_minimalPrimes, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, DoubleQuot.quotQuotEquivQuotSup_quotQuotMk, instIsPrincipalMapRingHom, Algebra.Generators.ker_comp_eq_sup, IsLocalization.ker_map, le_comap_map, mem_quotient_iff_mem_sup, map_comap_eq_self_of_equiv, DoubleQuot.quotQuotEquivCommₐ_toRingEquiv, DoubleQuot.coe_quotQuotToQuotSupₐ, map_isMaximal_of_equiv, IsLocalRing.basisQuotient_apply, trace_quotient_eq_trace_localization_quotient, map_eq_iff_sup_ker_eq_of_surjective, map_mapₐ, ker_quotientMap_mk, comap_le_map_of_inv_on, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal', powQuotSuccInclusion_injective, IsLocalization.AtPrime.comap_map_of_isMaximal, Algebra.TensorProduct.lTensor_ker, DoubleQuot.quotQuotEquivQuotSupₐ_toRingEquiv, map_inf_le, IsLocalization.comap_map_of_isPrimary_disjoint, mem_map_iff_of_surjective, Algebra.trace_quotient_eq_of_isDedekindDomain, map_iInf_comap_of_surjective, Algebra.mem_ideal_map_adjoin, IsCyclotomicExtension.Rat.map_eq_span_zeta_sub_one_pow, instIsTwoSidedMapRingHomOfRingHomSurjective, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_mk, map_surjective_of_surjective, IsDedekindDomain.ramificationIdx_eq_factors_count, IsLocalization.isMaximal_of_isMaximal_disjoint, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_mk, Polynomial.map_under_lt_comap_of_quasiFiniteAt, map_sSup, map_isPrime_of_surjective, map_comap_natCastRingHom_int, DoubleQuot.quotQuotEquivQuotOfLEₐ_toRingEquiv, AdjoinRoot.quotEquivQuotMap_symm_apply, isDomain_map_C_quotient, Polynomial.IsWeaklyEisensteinAt.map, map_mono, height_le_height_add_encard_of_subset, Algebra.FormallyUnramified.map_maximalIdeal, DividedPowers.Quotient.dpow_apply, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, DividedPowers.isSubDPIdeal_map_of_isSubDPIdeal, map_top, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, Factors.finiteDimensional_quotient_pow, map_le_of_le_comap, le_pow_of_le_ramificationIdx, isMaximal_map_iff_of_bijective, idealFactorsFunOfQuotHom_coe_coe, DoubleQuot.quotQuotEquivComm_comp_quotQuotMkₐ, IsDedekindDomain.ramificationIdx_eq_multiplicity, IsLocalization.AtPrime.equivQuotientMapMaximalIdeal_apply_mk, DoubleQuot.quotQuotEquivComm_mk_mk, map_comap_map, Factors.isPrime, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mk, comap_map_of_surjective', DoubleQuot.quotQuotEquivQuotSup_symm_quotQuotMk, map_equiv_liesOver, height_le_height_add_spanFinrank_of_le, map_idₐ, under_map_eq_map_under, DoubleQuot.coe_quotQuotEquivCommₐ, map_comap_le, map_prodComm_prod, polynomialQuotientEquivQuotientPolynomial_map_mk, MvPolynomial.quotientEquivQuotientMvPolynomial_rightInverse, DoubleQuot.quotQuotEquivQuotSup_quot_quot_algebraMap, quotient_mk_maps_eq, IsLocalization.ideal_eq_iInf_comap_map_away, DoubleQuot.quotQuotEquivQuotOfLE_symm_mk, IsLocalization.mem_map_algebraMap_iff, inertiaDeg_map_eq, absNorm_algebraMap, map_pointwise_smul, quotientToQuotientRangePowQuotSuccAux_mk, relNorm_map_algEquiv, isPrime_map_C_iff_isPrime, map_jacobson_of_bijective, IsLocalization.AtPrime.isPrime_map_of_liesOver, Factors.piQuotientEquiv_mk, map_coe, DoubleQuot.quotQuotEquivQuotSupₐ_symm_toRingEquiv, IsLocalRing.local_hom_TFAE, IsLocalization.AtPrime.ramificationIdx_map_eq_ramificationIdx, Quotient.mk_smul_mk_quotient_map_quotient, map_pow, Algebra.idealMap_apply_coe, AddValuation.supp_quot, Localization.AtPrime.map_eq_maximalIdeal, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of, map_includeLeft_eq, map_iSup, map_jacobson_of_surjective, Algebra.TensorProduct.rTensor_ker, map_comap_of_surjective, IsLocalization.liesOver_of_isPrime_of_disjoint, mapHom_apply, DoubleQuot.coe_liftSupQuotQuotMkₐ, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal_basicOpen, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, DoubleQuot.quotQuotEquivQuotOfLE_comp_quotQuotMk, gc_map_comap, map_prime_of_equiv, pointwise_smul_def, ramificationIdx_map_self_eq_one, DoubleQuot.quotQuotEquivQuotOfLE_quotQuotMk, comap_le_iff_le_map, map_eq_bot_iff_le_ker, DoubleQuot.quotQuotEquivComm_symm, Factors.piQuotientEquiv_map, comap_map_eq_map_adjoin_of_coprime_conductor, DoubleQuot.quotQuotEquivComm_algebraMap, AlgebraicGeometry.IsAffineOpen.ideal_ext_iff, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply, AlgebraicGeometry.IsAffineOpen.mem_ideal_iff
|