Documentation Verification Report

Maps

📁 Source: Mathlib/RingTheory/Ideal/Maps.lean

Statistics

MetricCount
DefinitionsidealMap, comap, giMapComap, map, mapHom, orderEmbeddingOfSurjective, piOrderIso, relIsoOfBijective, relIsoOfSurjective, annihilator, idealComapOrderIso, ker, liftOfRightInverse, liftOfRightInverseAux, liftOfSurjective, annihilator
16
Theoremscoe_ideal_map, comap_ker, ker_coe, ker_coe_equiv, idealMap_apply_coe, ker_algebraMap_eq_bot, comap_bijective, comap_piEvalRingHom, map_bijective, map_of_surjective_of_ker_le, comap, comap, apply_coe_mem_map, apply_mem_of_equiv_iff, coe_comap, coe_piOrderIso_apply, coe_piOrderIso_symm_apply, coe_restrictScalars, comap_bot_le_of_injective, comap_bot_of_injective, comap_coe, comap_comap, comap_comapₐ, comap_eq_top_iff, comap_finsetInf, comap_iInf, comap_id, comap_idₐ, comap_inf, comap_injective_of_surjective, comap_isMaximal_of_equiv, comap_isMaximal_of_surjective, comap_isPrime, comap_le_comap_iff_of_surjective, comap_le_iff_le_map, comap_le_map_of_inv_on, comap_le_map_of_inverse, comap_map_comap, comap_map_eq_self_iff_of_isPrime, comap_map_eq_self_of_isMaximal, comap_map_of_bijective, comap_map_of_surjective, comap_map_of_surjective', comap_mono, comap_ne_top, comap_of_equiv, comap_radical, comap_sInf, comap_sInf', comap_symm, comap_top, disjoint_map_primeCompl_iff_comap_le, exists_ideal_comap_le_prime, gc_map_comap, instIsPrincipalIdealRingForallOfFinite, instIsTwoSidedComap, instIsTwoSidedMapRingHomOfRingHomSurjective, isMaximal_comap_iff_of_bijective, isMaximal_iff_of_bijective, isMaximal_map_iff_of_bijective, ker_le_comap, le_comap_map, le_comap_mul, le_comap_of_map_le, le_comap_pow, le_comap_sup, le_map_of_comap_le_of_surjective, mapHom_apply, map_bot, map_coe, map_comap_eq_self_of_equiv, map_comap_le, map_comap_map, map_comap_of_equiv, map_comap_of_surjective, map_eq_bot_iff_le_ker, map_eq_bot_iff_of_injective, map_eq_iff_sup_ker_eq_of_surjective, map_eq_submodule_map, map_eq_top_or_isMaximal_of_surjective, map_evalRingHom_pi, map_iInf_comap_of_surjective, map_iSup, map_iSup_comap_of_surjective, map_id, map_idₐ, map_inf_comap_of_surjective, map_inf_le, map_isMaximal_of_equiv, map_isPrime_of_equiv, map_isPrime_of_surjective, map_le_comap_of_inv_on, map_le_comap_of_inverse, map_le_iff_le_comap, map_le_of_le_comap, map_map, map_mapₐ, map_mono, map_mul, map_ne_bot_of_ne_bot, map_of_equiv, map_pointwise_smul, map_pow, map_radical_le, map_radical_of_surjective, map_sInf, map_sSup, map_span, map_sup, map_sup_comap_of_surjective, map_surjective_of_surjective, map_symm, map_top, mem_comap, mem_image_of_mem_map_of_surjective, mem_map_iff_of_surjective, mem_map_of_equiv, mem_map_of_mem, ne_bot_of_map_ne_bot, restrictScalars_mul, smul_restrictScalars, smul_top_eq_map, symm_apply_mem_of_equiv_iff, annihilator_eq, annihilator_le_of_injective, annihilator_le_of_surjective, annihilator_dfinsupp, annihilator_eq_bot, annihilator_eq_top_iff, annihilator_finsupp, annihilator_pi, annihilator_prod, comap_annihilator, mem_annihilator, ker_ringHom, idealComapOrderIso_apply, idealComapOrderIso_symm_apply, comap_ker, eq_liftOfRightInverse, eq_liftOfSurjective, injective_iff_ker_eq_bot, instIsTwoSidedKer, ker_coe_equiv, ker_coe_toRingHom, ker_comp_of_injective, ker_eq, ker_eq_bot_iff_eq_zero, ker_eq_comap_bot, ker_eq_top_of_subsingleton, ker_equiv, ker_equiv_comp, ker_evalRingHom, ker_isMaximal_of_surjective, ker_isPrime, ker_ne_top, ker_rangeRestrict, ker_rangeSRestrict, liftOfRightInverseAux_comp_apply, liftOfRightInverse_comp, liftOfRightInverse_comp_apply, liftOfSurjective_comp, liftOfSurjective_comp_apply, mem_ker, one_notMem_ker, sub_mem_ker_iff, annihilator_bot, annihilator_eq_top_iff, annihilator_iSup, annihilator_mono, annihilator_mul, annihilator_smul, annihilator_span, annihilator_span_singleton, annihilator_top, le_annihilator_iff, mem_annihilator, mem_annihilator', mem_annihilator_span, mem_annihilator_span_singleton, mul_annihilator, element_smul_restrictScalars, instIsPrincipalMapRingHom, instIsTwoSidedAnnihilator
183
Total199

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ideal_map 📖mathematicalIdeal.map
AlgHom
funLike
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
AlgHomClass.toRingHomClass
algHomClass
comap_ker 📖mathematicalIdeal.comap
AlgHom
funLike
AlgHomClass.toRingHomClass
algHomClass
RingHom.ker
comp
RingHom.comap_ker
ker_coe 📖mathematicalRingHom.ker
AlgHom
funLike
AlgHomClass.toRingHomClass
algHomClass
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
RingHomClass.toRingHom
AlgHomClass.toRingHomClass
algHomClass
ker_coe_equiv 📖mathematicalRingHom.ker
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
RingHomClass.toRingHom
AlgEquiv
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker_coe_equiv

Algebra

Definitions

NameCategoryTheorems
idealMap 📖CompOp
3 mathmath: idealMap_eq_ofEq_comp_toLocalized₀, idealMap_isLocalizedModule, idealMap_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
idealMap_apply_coe 📖mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
SetLike.instMembership
Submodule.setLike
Submodule.restrictScalars
Semiring.toModule
toSMul
IsScalarTower.right
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
DFunLike.coe
LinearMap
RingHom.id
Ideal
Submodule.addCommMonoid
Submodule.module
Submodule.module'
LinearMap.instFunLike
idealMap
IsScalarTower.right

FaithfulSMul

Theorems

NameKindAssumesProvesValidatesDepends On
ker_algebraMap_eq_bot 📖mathematicalRingHom.ker
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
algebraMap
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.ext
RingHom.instRingHomClass

Ideal

Definitions

NameCategoryTheorems
comap 📖CompOp
189 mathmath: comap_fiberIsoOfBijectiveResidueField_apply, comap_bot_le_of_injective, exists_comap_galRestrict_eq, comap_comapₐ, IsLocalization.minimalPrimes_map, le_comap_of_map_le, comap_inf, ramificationIdx_comap_eq, RingEquiv.idealComapOrderIso_apply, algebraMap_quotient_injective, Localization.AtPrime.mapPiEvalRingHom_bijective, coeff_zero_mem_comap_of_root_mem_of_eval_mem, comap_jacobson_of_surjective, exists_comap_eq_of_mem_minimalPrimes_of_injective, comap_cotangentIdeal, comap_symm, inertiaDeg_comap_eq, comap_map_eq_self_of_faithfullyFlat, map_mk_comap_factor, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, AlgebraicGeometry.Scheme.IdealSheafData.ideal_le_comap_ideal, IsLocalization.AtPrime.comap_map_eq_map, comap_finsetInf, comap_isMaximal_of_equiv, comap_map_eq_self_iff_of_isPrime, Module.associatedPrimes.preimage_comap_associatedPrimes_eq_associatedPrimes_of_isLocalizedModule, comap_idₐ, comap_iInf, IsLocalization.comap_map_of_isPrime_disjoint, comap_le_map_of_inverse, AlgebraicGeometry.stalkwise_SpecMap_iff, injective_quotient_le_comap_map, comap_of_equiv, AlgebraicGeometry.Scheme.ker_ideal_of_isPullback_of_isOpenImmersion, Localization.AtPrime.eq_maximalIdeal_iff_comap_eq, AlgebraicGeometry.Scheme.IdealSheafData.ideal_map, RingHom.comap_ker, map_inf_comap_of_surjective, IsLocalization.isMaximal_iff_isMaximal_disjoint, map_le_comap_of_inv_on, comap_sInf', relNorm_le_comap, map_mk_comap_factorPow, Module.comap_annihilator, comap_eq_top_iff, PrimeSpectrum.specComap_asIdeal, AddValuation.comap_supp, disjoint_map_primeCompl_iff_comap_le, Polynomial.map_under_lt_comap_of_weaklyQuasiFiniteAt, AlgHom.comap_ker, IsMaximal.comap_bijective, comp_quotientMap_eq_of_comp_eq, Valuation.HasExtension.maximalIdeal_comap_algebraMap_eq_maximalIdeal, IsLocalization.AtPrime.comap_maximalIdeal, IsPrime.comap, IsMaximal.comap_piEvalRingHom, comap_isMaximal_of_surjective, IsLocalization.isPrime_iff_isPrime_disjoint, Localization.localRingHom_id, IsLocalization.bot_lt_comap_prime, IsLocalization.map_comap, IsLocalization.AtPrime.liesOver_comap_of_liesOver, AlgebraicGeometry.Scheme.IdealSheafData.ideal_comap_of_isOpenImmersion, AlgHom.IsArithFrobAt.comap_eq, RingOfIntegers.not_dvd_exponent_iff, Localization.AtPrime.mapPiEvalRingHom_comp_algebraMap, comap_bot_of_injective, Localization.AtPrime.comap_maximalIdeal, IsLocalization.minimalPrimes_comap, image_comap_zeroLocus_eq_zeroLocus_comap, Valuation.comap_supp, IsIntegralClosure.comap_lt_comap, PrimeSpectrum.sigmaToPi_asIdeal, le_comap_of_ramificationIdx_ne_zero, comap_mono, Algebra.WeaklyQuasiFiniteAt.comap_algEquiv, comap_sInf, AlgHom.IsArithFrobAt.le_comap, map_le_comap_of_inverse, exists_ideal_over_prime_of_isIntegral_of_isDomain, comap_le_comap_iff_of_surjective, Polynomial.isMaximal_comap_C_of_isJacobsonRing, exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff, map_sup_comap_of_surjective, RingHom.surjective_localRingHom_of_surjective, IsLocalization.isLocalization_isLocalization_atPrime_isLocalization, PrimeSpectrum.mem_range_comap_iff, comap_liesOver, RingEquiv.height_comap, comap_map_quotientMk, minimalPrimes_eq_comap, comap_surjective_of_faithfullyFlat, Polynomial.isMaximal_comap_C_of_isMaximal, map_iSup_comap_of_surjective, ker_le_comap, pointwise_smul_eq_comap, map_le_iff_le_comap, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, comap_map_of_surjective, under_def, coe_comap, comap_map_mk, PrimeSpectrum.closure_image_comap_zeroLocus, comap_lt_comap_of_integral_mem_sdiff, AlgebraicGeometry.stalkwise_Spec_map_iff, comap_map_of_bijective, isMaximal_comap_of_isIntegral_of_isMaximal, RingHom.IsIntegral.quotient, comap_map_eq_self_of_isMaximal, IsLocalization.disjoint_comap_iff, IsPRadical.comap_pNilradical, RingHom.ker_eq_comap_bot, IntegralClosure.comap_lt_comap, map_comap_of_equiv, map_symm, comap_map_comap, minimal_primes_comap_of_surjective, Algebra.Generators.ker_comp_eq_sup, le_comap_map, comap_minimalPrimes_eq_of_surjective, map_comap_eq_self_of_equiv, IsRadical.comap, comap_le_map_of_inv_on, IsLocalization.AtPrime.comap_map_of_isMaximal, le_comap_pow, isMaximal_comap_iff_of_bijective, IsLocalization.comap_map_of_isPrimary_disjoint, PrimeSpectrum.comap_asIdeal, map_iInf_comap_of_surjective, IsDedekindDomain.primesOverEquivPrimesOver_symm_apply, image_specComap_zeroLocus_eq_zeroLocus_comap, comap_isPrime, exists_coeff_ne_zero_mem_comap_of_root_mem, minimalPrimes_comap_subset, spanNorm_le_comap, exists_ideal_over_maximal_of_isIntegral, Polynomial.map_under_lt_comap_of_quasiFiniteAt, span_singleton_absNorm, map_comap_natCastRingHom_int, comap_top, quotientMap_injective, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, Localization.le_comap_primeCompl_iff, idealFactorsFunOfQuotHom_coe_coe, IsLocalization.isLocalization_atPrime_localization_atPrime, IsPrimary.comap, Algebra.IsIntegral.quotient, map_comap_map, le_comap_sup, comap_map_of_surjective', comap_fiberIsoOfBijectiveResidueField_symm, AlgebraicGeometry.Scheme.IdealSheafData.ker_glueDataObjι_appTop, map_comap_le, CharP.quotient_iff_le_ker_natCast, comap_radical, comap_coe, quotient_mk_maps_eq, IsLocalization.ideal_eq_iInf_comap_map_away, isIntegral_quotientMap_iff, coeff_zero_mem_comap_of_root_mem, IsLocalization.orderIsoOfPrime_apply_coe, IsLocalization.primeHeight_comap, Ring.le_comap_jacobson, mem_comap, le_comap_mul, exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem, Algebra.QuasiFiniteAt.comap_algEquiv, RingHom.surjectiveOnStalks_iff_forall_maximal, IsLocalRing.local_hom_TFAE, instIsTwoSidedComap, AlgebraicGeometry.Scheme.IdealSheafData.ideal_map_of_isAffineHom, isMaximal_comap_of_isIntegral_of_isMaximal', comap_injective_of_surjective, map_comap_of_surjective, comap_id, comap_eq_of_scalar_tower_quotient, AlgebraicGeometry.Scheme.localRingHom_comp_stalkIso_apply, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, comap_lt_comap_of_root_mem_sdiff, IsLocalization.height_comap, gc_map_comap, Localization.AtPrime.mapPiEvalRingHom_algebraMap_apply, comap_jacobson, relNorm_comap_algEquiv, comap_le_iff_le_map, RingHom.surjective_localRingHom_iff, le_comap_pow_ramificationIdx, comap_comap, Polynomial.isIntegral_isLocalization_polynomial_quotient
giMapComap 📖CompOp
map 📖CompOp
340 mathmath: Polynomial.not_ker_le_map_C_of_surjective_of_quasiFiniteAt, IsDedekindDomain.differentIdeal_dvd_map_differentIdeal, Polynomial.ker_mapRingHom, IsLocalization.map_radical, Algebra.idealMap_eq_ofEq_comp_toLocalized₀, DoubleQuot.liftSupQuotQuotMkₐ_toRingHom, IsDedekindDomain.HeightOneSpectrum.equivPrimesOver_apply, IsLocalization.AtPrime.liesOver_map_of_liesOver, IsLocalization.minimalPrimes_map, map_eq_top_iff_of_ker_le, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_apply_mk, NumberField.isCoprime_differentIdeal_of_isCoprime_discr, map_ofList, differentIdeal_eq_differentIdeal_mul_differentIdeal, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_X_mem, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, exists_mem_span_singleton_map_residueField_eq, smul_top_eq_map, DoubleQuot.coe_quotQuotEquivQuotOfLEₐ_symm, MvPolynomial.ker_map, IsMaximal.map_bijective, coe_smul_primesOver_mk_eq_map_galRestrict, DividedPowers.IsDPMorphism.ideal_comp, Polynomial.fiberEquivQuotient_tmul, map_fst_prod, PowerSeries.spanFinrank_le_spanFinrank_map_constantCoeff_add_one_of_isPrime, comap_symm, DoubleQuot.coe_quotQuotMkₐ, Submodule.IsPrincipal.map_ringHom, IsLocalRing.finrank_quotient_map, comap_map_eq_self_of_faithfullyFlat, quotient_map_C_eq_zero, map_mk_comap_factor, PowerBasis.quotientEquivQuotientMinpolyMap_apply, Factors.fact_ramificationIdx_neZero, map_spanIntNorm, QuotientMapQuotient.isNoetherian, IsLocalization.AtPrime.comap_map_eq_map, DoubleQuot.quotQuotEquivQuotOfLEₐ_symm_toRingEquiv, map_under_le_under_map, height_eq_height_add_of_liesOver_of_hasGoingDown, Quotient.tower_quotient_map_quotient, map_eq_top_or_isMaximal_of_surjective, DoubleQuot.quotQuotEquivComm_symmₐ, liesOver_iff_dvd_map, FractionalIdeal.extendedHomₐ_coeIdeal_eq_map, comap_map_eq_self_iff_of_isPrime, spanIntNorm_localization, isPrime_map_of_isLocalizationAtPrime, jacobson_bot_polynomial_le_sInf_map_maximal, mem_map_of_mem, Quotient.instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, IsLocalRing.basisQuotient_repr, Algebra.FormallyUnramified.iff_map_maximalIdeal_eq, IsLocalization.comap_map_of_isPrime_disjoint, map_mul, FG.map, comap_le_map_of_inverse, IsLocalization.AtPrime.inertiaDeg_map_eq_inertiaDeg, injective_quotient_le_comap_map, Quotient.algebraMap_quotient_map_quotient, DoubleQuot.quotQuotEquivComm_comp_quotQuotMk, DoubleQuot.quotQuotEquivComm_quotQuotMk, Algebra.Generators.map_toComp_ker, map_id, powQuotSuccInclusion_apply_coe, map_inf_comap_of_surjective, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, IsLocalization.mapFrameHom_apply, IsLocalization.map_inf, DoubleQuot.quotQuotToQuotSupₐ_toRingHom, AlgebraicGeometry.IsAffineOpen.ideal_le_iff, Algebra.Generators.map_ofComp_ker, IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count, PowerSeries.map_constantCoeff_le_self_of_X_mem, map_relNorm, map_le_comap_of_inv_on, localized'_eq_map, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_symm_apply_mk, IsLocalization.AtPrime.exists_algebraMap_quot_eq_of_mem_quot, map_includeRight_eq, Algebra.FormallyUnramified.isField_quotient_map_maximalIdeal, DividedPowers.isSubDPIdeal_map, map_mk_comap_factorPow, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, map_mk_eq_bot_of_le, Algebra.TensorProduct.map_ker, height_le_height_add_of_liesOver, height_le_height_add_one_of_mem, Polynomial.map_under_lt_comap_of_weaklyQuasiFiniteAt, MvPolynomial.quotient_map_C_eq_zero, Polynomial.height_map_C, IsMaximal.map_of_surjective_of_ker_le, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, under_map_of_isLocalizationAtPrime, map_span, Factors.isScalarTower, DividedPowers.isDPMorphism_iff, IsLocalization.algebraMap_mem_map_algebraMap_iff, IsDedekindDomain.primesOverEquivPrimesOver_apply, quotientToQuotientRangePowQuotSucc_mk, mem_map_of_equiv, AdjoinRoot.quotEquivQuotMap_apply, le_pow_ramificationIdx, IsLocalization.height_map_of_disjoint, DoubleQuot.quotQuotEquivQuotOfLE_comp_quotQuotMkₐ, map_radical_of_surjective, mem_quotient_iff_mem, le_map_of_comap_le_of_surjective, IsLocalization.map_comap, IsHausdorff.map_algebraMap_iff, FractionalIdeal.extended_coeIdeal_eq_map, DoubleQuot.ker_quotQuotMk, map_eq_bot_iff_of_injective, DoubleQuot.coe_quotQuotEquivQuotSupₐ, LocalSubring.map_maximalIdeal_eq_top_of_isMax, isPrime_map_quotientMk_of_isPrime, ramificationIdx_map_eq, symm_apply_mem_of_equiv_iff, map_evalRingHom_pi, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal, IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime, Algebra.isUnramifiedAt_iff_map_eq, relNorm_algebraMap', IsLocalization.isPrime_of_isPrime_disjoint, map_quotient_self, IsLocalization.mk'_mem_map_algebraMap_iff, spanRank_map_le, spanFinrank_map_le_of_fg, quotAdjoinEquivQuotMap_apply_mk, PowerSeries.spanFinrank_eq_spanFinrank_map_constantCoeff_of_X_notMem_of_fg_of_isPrime, quotientToQuotientRangePowQuotSucc_surjective, localized₀_eq_restrictScalars_map, RingEquiv.idealComapOrderIso_symm_apply, Valuation.supp_quot, ideal_prod_eq, map_snd_prod, map_le_comap_of_inverse, DoubleQuot.coe_quotQuotEquivQuotSupₐ_symm, relNorm_algebraMap, Rat.HeightOneSpectrum.natGenerator_dvd_iff, finrank_quotient_map, Algebra.Generators.comp_localizationAway_ker, MvPolynomial.mem_map_C_iff, map_sup_comap_of_surjective, map_radical_le, map_bot, DoubleQuot.quotQuotMkₐ_toRingHom, ker_quotient_lift, PrimeSpectrum.mem_range_comap_iff, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mkₐ, map_sup, AdjoinRoot.quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, comap_map_quotientMk, DividedPowers.DPMorphism.ideal_comp, DividedPowers.isDPMorphism_def, map_eq_top_iff, IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply, map_iSup_comap_of_surjective, Quotient.factor_ker, map_le_iff_le_comap, IsLocalization.AtPrime.map_eq_maximalIdeal, DoubleQuot.ker_quotLeftToQuotSup, comap_map_of_surjective, Factors.liesOver, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, Polynomial.contentIdeal_map_eq_map_contentIdeal, IsLocalization.AtPrime.isMaximal_map, KummerDedekind.Ideal.irreducible_map_of_irreducible_minpoly, comap_map_mk, Rat.HeightOneSpectrum.span_natGenerator, Polynomial.not_ker_le_map_C_of_surjective_of_weaklyQuasiFiniteAt, isPrime_map_C_of_isPrime, DoubleQuot.coe_quotQuotEquivQuotOfLEₐ, apply_mem_of_equiv_iff, quotientToQuotientRangePowQuotSucc_injective, Algebra.idealMap_isLocalizedModule, minimalPrimes_map_of_surjective, AlgHom.coe_ideal_map, AlgebraicGeometry.Scheme.IdealSheafData.ofIdealTop_ideal, apply_coe_mem_map, mem_map_C_iff, PowerSeries.fg_iff_of_isPrime, MvPolynomial.quotientEquivQuotientMvPolynomial_leftInverse, comap_map_of_bijective, Algebra.trace_quotient_mk, RingEquiv.height_map, polynomialQuotientEquivQuotientPolynomial_symm_mk, map_isPrime_of_equiv, map_of_equiv, Polynomial.IsWeaklyEisensteinAt.pow_natDegree_le_of_aeval_zero_of_monic_mem_map, IsLocalization.orderIsoOfPrime_symm_apply_coe, map_map, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_symm_tmul, map_eq_submodule_map, MvPolynomial.ker_mapAlgHom, comap_map_eq_self_of_isMaximal, IsLocalRing.quotient_span_eq_top_iff_span_eq_top, Factors.finrank_pow_ramificationIdx, DividedPowers.Quotient.isDPMorphism, DoubleQuot.quotQuotEquivQuotOfLEₐ_comp_mkₐ, Algebra.weaklyQuasiFiniteAt_iff, rank_pow_quot_aux, map_comap_of_equiv, smul_restrictScalars, mem_primesOver_iff_mem_normalizedFactors, map_sInf, map_symm, coe_smul_primesOver_eq_map_galRestrict, map_algebraMap_eq_finset_prod_pow, rank_pow_quot, comap_map_comap, map_height_le_one_of_mem_minimalPrimes, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, DoubleQuot.quotQuotEquivQuotSup_quotQuotMk, instIsPrincipalMapRingHom, Algebra.Generators.ker_comp_eq_sup, IsLocalization.ker_map, le_comap_map, mem_quotient_iff_mem_sup, map_comap_eq_self_of_equiv, DoubleQuot.quotQuotEquivCommₐ_toRingEquiv, DoubleQuot.coe_quotQuotToQuotSupₐ, map_isMaximal_of_equiv, IsLocalRing.basisQuotient_apply, trace_quotient_eq_trace_localization_quotient, map_eq_iff_sup_ker_eq_of_surjective, map_mapₐ, ker_quotientMap_mk, comap_le_map_of_inv_on, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal', powQuotSuccInclusion_injective, IsLocalization.AtPrime.comap_map_of_isMaximal, Algebra.TensorProduct.lTensor_ker, DoubleQuot.quotQuotEquivQuotSupₐ_toRingEquiv, map_inf_le, IsLocalization.comap_map_of_isPrimary_disjoint, mem_map_iff_of_surjective, Algebra.trace_quotient_eq_of_isDedekindDomain, map_iInf_comap_of_surjective, Algebra.mem_ideal_map_adjoin, IsCyclotomicExtension.Rat.map_eq_span_zeta_sub_one_pow, instIsTwoSidedMapRingHomOfRingHomSurjective, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_mk, map_surjective_of_surjective, IsDedekindDomain.ramificationIdx_eq_factors_count, IsLocalization.isMaximal_of_isMaximal_disjoint, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_mk, Polynomial.map_under_lt_comap_of_quasiFiniteAt, map_sSup, map_isPrime_of_surjective, map_comap_natCastRingHom_int, DoubleQuot.quotQuotEquivQuotOfLEₐ_toRingEquiv, AdjoinRoot.quotEquivQuotMap_symm_apply, isDomain_map_C_quotient, Polynomial.IsWeaklyEisensteinAt.map, map_mono, height_le_height_add_encard_of_subset, Algebra.FormallyUnramified.map_maximalIdeal, DividedPowers.Quotient.dpow_apply, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, DividedPowers.isSubDPIdeal_map_of_isSubDPIdeal, map_top, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, Factors.finiteDimensional_quotient_pow, map_le_of_le_comap, le_pow_of_le_ramificationIdx, isMaximal_map_iff_of_bijective, idealFactorsFunOfQuotHom_coe_coe, DoubleQuot.quotQuotEquivComm_comp_quotQuotMkₐ, IsDedekindDomain.ramificationIdx_eq_multiplicity, IsLocalization.AtPrime.equivQuotientMapMaximalIdeal_apply_mk, DoubleQuot.quotQuotEquivComm_mk_mk, map_comap_map, Factors.isPrime, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mk, comap_map_of_surjective', DoubleQuot.quotQuotEquivQuotSup_symm_quotQuotMk, map_equiv_liesOver, height_le_height_add_spanFinrank_of_le, map_idₐ, under_map_eq_map_under, DoubleQuot.coe_quotQuotEquivCommₐ, map_comap_le, map_prodComm_prod, polynomialQuotientEquivQuotientPolynomial_map_mk, MvPolynomial.quotientEquivQuotientMvPolynomial_rightInverse, DoubleQuot.quotQuotEquivQuotSup_quot_quot_algebraMap, quotient_mk_maps_eq, IsLocalization.ideal_eq_iInf_comap_map_away, DoubleQuot.quotQuotEquivQuotOfLE_symm_mk, IsLocalization.mem_map_algebraMap_iff, inertiaDeg_map_eq, absNorm_algebraMap, map_pointwise_smul, quotientToQuotientRangePowQuotSuccAux_mk, relNorm_map_algEquiv, isPrime_map_C_iff_isPrime, map_jacobson_of_bijective, IsLocalization.AtPrime.isPrime_map_of_liesOver, Factors.piQuotientEquiv_mk, map_coe, DoubleQuot.quotQuotEquivQuotSupₐ_symm_toRingEquiv, IsLocalRing.local_hom_TFAE, IsLocalization.AtPrime.ramificationIdx_map_eq_ramificationIdx, Quotient.mk_smul_mk_quotient_map_quotient, map_pow, Algebra.idealMap_apply_coe, AddValuation.supp_quot, Localization.AtPrime.map_eq_maximalIdeal, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of, map_includeLeft_eq, map_iSup, map_jacobson_of_surjective, Algebra.TensorProduct.rTensor_ker, map_comap_of_surjective, IsLocalization.liesOver_of_isPrime_of_disjoint, mapHom_apply, DoubleQuot.coe_liftSupQuotQuotMkₐ, AlgebraicGeometry.Scheme.IdealSheafData.map_ideal_basicOpen, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, DoubleQuot.quotQuotEquivQuotOfLE_comp_quotQuotMk, gc_map_comap, map_prime_of_equiv, pointwise_smul_def, ramificationIdx_map_self_eq_one, DoubleQuot.quotQuotEquivQuotOfLE_quotQuotMk, comap_le_iff_le_map, map_eq_bot_iff_le_ker, DoubleQuot.quotQuotEquivComm_symm, Factors.piQuotientEquiv_map, comap_map_eq_map_adjoin_of_coprime_conductor, DoubleQuot.quotQuotEquivComm_algebraMap, AlgebraicGeometry.IsAffineOpen.ideal_ext_iff, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply, AlgebraicGeometry.IsAffineOpen.mem_ideal_iff
mapHom 📖CompOp
1 mathmath: mapHom_apply
orderEmbeddingOfSurjective 📖CompOp
piOrderIso 📖CompOp
2 mathmath: coe_piOrderIso_symm_apply, coe_piOrderIso_apply
relIsoOfBijective 📖CompOp
relIsoOfSurjective 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
apply_coe_mem_map 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
DFunLike.coe
mem_map_of_mem
apply_mem_of_equiv_iff 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
DFunLike.coe
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comap_symm
mem_comap
RingEquiv.symm_apply_apply
coe_comap 📖mathematicalSetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
Set.preimage
DFunLike.coe
coe_piOrderIso_apply 📖mathematicalSetLike.coe
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
DFunLike.coe
RelIso
Ideal
Pi.semiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Pi.hasLe
RelIso.instFunLike
piOrderIso
Set.iInter
Set
Set.instHasSubset
Set.preimage
Set.iInter_congr_Prop
Set.image_congr
coe_piOrderIso_symm_apply 📖mathematicalSetLike.coe
Submodule
Pi.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
DFunLike.coe
RelIso
Ideal
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
RelIso.instFunLike
RelIso.symm
piOrderIso
setOf
coe_restrictScalars 📖mathematicalSetLike.coe
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.setLike
Submodule.restrictScalars
Semiring.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Ideal
comap_bot_le_of_injective 📖mathematicalDFunLike.coeIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
Bot.bot
Submodule.instBot
le_trans
Submodule.zero_mem
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
Submodule.mem_bot
mem_comap
bot_le
comap_bot_of_injective 📖mathematicalDFunLike.coecomap
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
le_bot_iff
comap_bot_le_of_injective
comap_coe 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
RingHom.instRingHomClass
RingHom.instRingHomClass
comap_comap 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
RingHom.comp
RingHom.instRingHomClass
comap_comapₐ 📖mathematicalcomap
AlgHom
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp
comap_comap
comap_eq_top_iff 📖mathematicalcomap
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
eq_top_iff_one
mem_comap
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
comap_top
comap_finsetInf 📖mathematicalcomap
Finset.inf
Ideal
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instOrderTop
comap.congr_simp
Finset.inf_eq_iInf
comap_iInf
comap_iInf 📖mathematicalcomap
iInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
GaloisConnection.u_iInf
gc_map_comap
comap_id 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
RingHom.instRingHomClass
ext
RingHom.instRingHomClass
comap_idₐ 📖mathematicalcomap
AlgHom
AlgHom.funLike
AlgHom.id
AlgHomClass.toRingHomClass
AlgHom.algHomClass
comap_id
comap_inf 📖mathematicalcomap
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap_injective_of_surjective 📖mathematicalDFunLike.coeIdeal
comap
GaloisInsertion.u_injective
comap_isMaximal_of_equiv 📖mathematicalIsMaximal
comap
EquivLike.toFunLike
RingEquivClass.toRingHomClass
Semiring.toNonAssocSemiring
IsMaximal.comap_bijective
RingEquivClass.toRingHomClass
EquivLike.bijective
comap_isMaximal_of_surjective 📖mathematicalDFunLike.coeIsMaximal
Ring.toSemiring
comap
comap_ne_top
IsMaximal.out
lt_of_le_of_ne
le_map_of_comap_le_of_surjective
le_of_lt
ne_of_lt
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
comap_map_of_surjective
sup_eq_left
le_trans
comap_mono
bot_le
eq_top_iff
comap_top
sup_le
le_of_eq
comap_isPrime 📖mathematicalIsPrime
comap
IsPrime.comap
comap_le_comap_iff_of_surjective 📖mathematicalDFunLike.coeIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
LE.le.trans
Eq.le
map_comap_of_surjective
map_le_of_le_comap
le_comap_of_map_le
comap_le_iff_le_map 📖mathematicalFunction.Bijective
DFunLike.coe
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
map
le_map_of_comap_le_of_surjective
comap_mono
Equiv.right_inv
comap_le_map_of_inv_on 📖mathematicalSet.LeftInvOn
DFunLike.coe
Set.preimage
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
comap
map
mem_map_of_mem
comap_le_map_of_inverse 📖mathematicalDFunLike.coeIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
map
comap_le_map_of_inv_on
Function.LeftInverse.leftInvOn
comap_map_comap 📖mathematicalcomap
map
GaloisConnection.u_l_u_eq_u
gc_map_comap
comap_map_eq_self_iff_of_isPrime 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
map
IsPrime
RingHom.instRingHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
exists_le_prime_disjoint
disjoint_map_primeCompl_iff_comap_le
Eq.le
le_antisymm
map_le_iff_le_comap
comap_map_comap
comap_map_eq_self_of_isMaximal 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
map
RingHom.instRingHomClass
IsCoatom.le_iff_eq
IsMaximal.out
comap_ne_top
le_comap_map
comap_map_of_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
comap
map
le_antisymm
comap_le_iff_le_map
le_comap_map
comap_map_of_surjective 📖mathematicalDFunLike.coecomap
Ring.toSemiring
map
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
le_antisymm
mem_image_of_mem_map_of_surjective
Submodule.mem_sup
Submodule.mem_bot
map_sub
RingHomClass.toAddMonoidHomClass
sub_self
add_sub_cancel
sup_le
map_le_iff_le_comap
le_rfl
comap_mono
bot_le
comap_map_of_surjective' 📖mathematicalDFunLike.coecomap
Ring.toSemiring
map
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
comap_map_of_surjective
comap_mono 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comapSet.preimage_mono
comap_ne_top 📖ne_top_iff_one
mem_comap
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
comap_of_equiv 📖mathematicalcomap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingHom.instRingHomClass
RingEquiv.symm
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingHom.instRingHomClass
RingEquiv.toRingHom_eq_coe
comap_comap
RingEquiv.symm_comp
comap_id
comap_radical 📖mathematicalcomap
CommSemiring.toSemiring
radical
ext
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
comap_sInf 📖mathematicalcomap
InfSet.sInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iInf
Set
Set.instMembership
GaloisConnection.u_sInf
gc_map_comap
comap_sInf' 📖mathematicalcomap
InfSet.sInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iInf
Set
Set.instMembership
Set.image
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
comap_sInf
iInf_image
comap_symm 📖mathematicalcomap
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_comap_of_equiv
comap_top 📖mathematicalcomap
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
GaloisConnection.u_top
gc_map_comap
disjoint_map_primeCompl_iff_comap_le 📖mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.map
CommSemiring.toSemiring
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
primeCompl
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
comap
RingHom.instRingHomClass
Set.disjoint_image_right
disjoint_compl_right_iff
exists_ideal_comap_le_prime 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
CommSemiring.toSemiring
IsPrimeMonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
exists_le_prime_disjoint
Set.disjoint_left
of_not_not
gc_map_comap 📖mathematicalGaloisConnection
Ideal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
comap
map_le_iff_le_comap
instIsPrincipalIdealRingForallOfFinite 📖mathematicalIsPrincipalIdealRingPi.semiringOrderIso.symm_apply_apply
IsPrincipalIdealRing.principal
Submodule.IsPrincipal.span_singleton_generator
pi_span
instIsTwoSidedComap 📖mathematicalIsTwoSided
comap
mem_comap
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_mem_right
instIsTwoSidedMapRingHomOfRingHomSurjective 📖mathematicalIsTwoSided
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
map_eq_submodule_map
RingHom.surjective
RingHom.coe_toSemilinearMap
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_mem_right
isMaximal_comap_iff_of_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
IsMaximal
comap
OrderIso.isCoatom_iff
isMaximal_iff_of_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
IsMaximal
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsMaximal.map_bijective
map_bot
RingHomClass.toNonUnitalRingHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.bijective
isMaximal_map_iff_of_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
IsMaximal
map
OrderIso.isCoatom_iff
ker_le_comap 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
comap
mem_comap
zero_mem
RingHom.mem_ker
le_comap_map 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
map
GaloisConnection.le_u_l
gc_map_comap
le_comap_mul 📖mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.mul
IsScalarTower.right
Algebra.id
comap
IsScalarTower.right
map_le_iff_le_comap
mul_mono
le_rfl
IsScalarTower.left
map_mul
le_comap_of_map_le 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
comapGaloisConnection.le_u
gc_map_comap
le_comap_pow 📖mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
comap
IsScalarTower.right
pow_zero
one_eq_top
Eq.le
pow_succ
LE.le.trans
IsScalarTower.left
mul_mono_left
le_comap_mul
le_comap_sup 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
comap
Monotone.le_map_sup
GaloisConnection.monotone_u
gc_map_comap
le_map_of_comap_le_of_surjective 📖mathematicalDFunLike.coe
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
mapmap_mono
map_comap_of_surjective
mapHom_apply 📖mathematicalDFunLike.coe
RingHom
Ideal
CommSemiring.toSemiring
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
RingHom.instFunLike
mapHom
map
map_bot 📖mathematicalmap
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
GaloisConnection.l_bot
gc_map_comap
map_coe 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
map_comap_eq_self_of_equiv 📖mathematicalmap
EquivLike.toFunLike
comap
RingEquivClass.toRingHomClass
Semiring.toNonAssocSemiring
map_comap_of_surjective
RingEquivClass.toRingHomClass
EquivLike.surjective
map_comap_le 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
comap
GaloisConnection.l_u_le
gc_map_comap
map_comap_map 📖mathematicalmap
comap
GaloisConnection.l_u_l_eq_l
gc_map_comap
map_comap_of_equiv 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comap
RingEquiv.symm
le_antisymm
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_le_comap_of_inverse
Equiv.left_inv'
comap_le_map_of_inverse
Equiv.right_inv'
map_comap_of_surjective 📖mathematicalDFunLike.coemap
comap
le_antisymm
map_le_iff_le_comap
le_rfl
mem_map_of_mem
map_eq_bot_iff_le_ker 📖mathematicalmap
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
RingHom.ker
RingHom.ker.eq_1
eq_bot_iff
map_le_iff_le_comap
map_eq_bot_iff_of_injective 📖mathematicalDFunLike.coemap
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
Submodule.eq_bot_iff
map_eq_iff_sup_ker_eq_of_surjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
map
Ideal
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
RingHom.ker
RingHom.instRingHomClass
RingHom.instRingHomClass
comap_injective_of_surjective
comap_map_of_surjective
RingHom.ker_eq_comap_bot
map_eq_submodule_map 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Submodule.map
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.toSemilinearMap
Submodule.ext
mem_map_iff_of_surjective
RingHom.instRingHomClass
RingHomSurjective.is_surjective
map_eq_top_or_isMaximal_of_surjective 📖mathematicalDFunLike.coemap
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsMaximal
comap_injective_of_surjective
IsMaximal.out
LE.le.trans_lt
le_comap_map
OrderEmbedding.strictMono
map_evalRingHom_pi 📖mathematicalmap
RingHom
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
Pi.semiring
RingHom.instFunLike
Pi.evalRingHom
pi
ext
mem_map_iff_of_surjective
RingHom.instRingHomClass
Function.surjective_eval
Zero.instNonempty
single_mem_pi
Pi.single_eq_same
map_iInf_comap_of_surjective 📖mathematicalDFunLike.coemap
iInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
GaloisInsertion.l_iInf_u
map_iSup 📖mathematicalmap
iSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
GaloisConnection.l_iSup
gc_map_comap
map_iSup_comap_of_surjective 📖mathematicalDFunLike.coemap
iSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
GaloisInsertion.l_iSup_u
map_id 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
GaloisConnection.l_unique
RingHom.instRingHomClass
gc_map_comap
GaloisConnection.id
comap_id
map_idₐ 📖mathematicalmap
AlgHom
AlgHom.funLike
AlgHom.id
map_id
map_inf_comap_of_surjective 📖mathematicalDFunLike.coemap
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
GaloisInsertion.l_inf_u
map_inf_le 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
Submodule.instMin
Monotone.map_inf_le
GaloisConnection.monotone_l
gc_map_comap
map_isMaximal_of_equiv 📖mathematicalIsMaximal
map
EquivLike.toFunLike
IsMaximal.map_bijective
RingEquivClass.toRingHomClass
EquivLike.bijective
map_isPrime_of_equiv 📖mathematicalIsPrime
map
EquivLike.toFunLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_comap_of_equiv
IsPrime.comap
map_isPrime_of_surjective 📖mathematicalDFunLike.coe
Ideal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
IsPrime
map
IsPrime.ne_top
eq_top_iff
sup_le
le_of_eq
comap_top
comap_map_of_surjective
mem_map_iff_of_surjective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
zero_add
Mathlib.Tactic.Abel.zero_termg
sub_mem
map_sub
RingHomClass.toAddMonoidHomClass
sub_eq_zero
mem_map_of_mem
IsPrime.mem_or_mem
map_le_comap_of_inv_on 📖mathematicalSet.LeftInvOn
DFunLike.coe
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
map
comap
span_le
SetLike.mem_coe
mem_comap
map_le_comap_of_inverse 📖mathematicalDFunLike.coeIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
comap
map_le_comap_of_inv_on
Function.LeftInverse.leftInvOn
map_le_iff_le_comap 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
comap
span_le
Set.image_subset_iff
map_le_of_le_comap 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
mapGaloisConnection.l_le
gc_map_comap
map_map 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.comp
GaloisConnection.l_unique
RingHom.instRingHomClass
GaloisConnection.compose
gc_map_comap
comap_comap
map_mapₐ 📖mathematicalmap
AlgHom
AlgHom.funLike
AlgHom.comp
map_map
map_mono 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
mapspan_mono
Set.image_mono
map_mul 📖mathematicalmap
CommSemiring.toSemiring
Ideal
Submodule.mul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
IsScalarTower.right
Algebra.id
le_antisymm
IsScalarTower.left
IsScalarTower.right
map_le_iff_le_comap
mul_le
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_mem_mul
mem_map_of_mem
span_le
span_mul_span
instIsTwoSided
map_ne_bot_of_ne_bot 📖Function.mt
map_eq_bot_iff_of_injective
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
map_of_equiv 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.toRingHom_eq_coe
map_map
RingEquiv.symm_comp
map_id
map_pointwise_smul 📖mathematicalmap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
Ideal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submodule.pointwiseDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
DFunLike.coe
Algebra.to_smulCommClass
IsScalarTower.left
smulCommClass_self
Submodule.ideal_span_singleton_smul
IsScalarTower.right
smul_eq_mul
map_mul
RingHom.instRingHomClass
map_span
Set.image_singleton
map_pow 📖mathematicalmap
CommSemiring.toSemiring
Ideal
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_radical_le 📖mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
radical
map_le_iff_le_comap
mem_map_of_mem
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_radical_of_surjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
map
radical
RingHom.instRingHomClass
radical_eq_sInf
LE.le.trans
map_le_iff_le_comap
comap_isPrime
map_comap_of_surjective
map_mono
map_isPrime_of_surjective
le_trans
map_sInf
map_sInf 📖mathematicalDFunLike.coe
Ideal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
map
InfSet.sInf
Submodule.instInfSet
Set.image
le_antisymm
le_sInf
mem_map_iff_of_surjective
Set.mem_image
mem_map_of_mem
sInf_le_of_le
le_of_eq
Submodule.mem_sInf
RingHom.mem_ker
map_sub
RingHomClass.toAddMonoidHomClass
sub_self
sub_add_cancel
Submodule.add_mem
map_sSup 📖mathematicalmap
SupSet.sSup
Ideal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iSup
Set
Set.instMembership
GaloisConnection.l_sSup
gc_map_comap
map_span 📖mathematicalmap
span
Set.image
DFunLike.coe
Submodule.span_eq_of_le
mem_map_of_mem
subset_span
map_le_iff_le_comap
span_le
coe_comap
Set.image_subset_iff
map_sup 📖mathematicalmap
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
GaloisConnection.l_sup
gc_map_comap
map_sup_comap_of_surjective 📖mathematicalDFunLike.coemap
Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
GaloisInsertion.l_sup_u
map_surjective_of_surjective 📖mathematicalDFunLike.coeIdeal
map
GaloisInsertion.l_surjective
map_symm 📖mathematicalmap
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
comap
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_comap_of_equiv
map_top 📖mathematicalmap
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
eq_top_iff_one
subset_span
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
mem_comap 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
DFunLike.coe
mem_image_of_mem_map_of_surjective 📖mathematicalDFunLike.coe
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
Set
Set.instMembership
Set.image
SetLike.coe
Submodule.span_induction
zero_mem
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
add_mem
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
mul_mem_left
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mem_map_iff_of_surjective 📖mathematicalDFunLike.coeIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
Set.mem_image
mem_image_of_mem_map_of_surjective
mem_map_of_mem
mem_map_of_equiv 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
EquivLike.toFunLike
DFunLike.coe
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_comap_of_equiv
RingEquiv.apply_symm_apply
mem_map_of_mem
mem_map_of_mem 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
DFunLike.coe
subset_span
ne_bot_of_map_ne_bot 📖map_bot
restrictScalars_mul 📖mathematicalSubmodule.restrictScalars
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Ideal
Submodule.mul
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Submodule
IsScalarTower.left
smul_restrictScalars 📖mathematicalSubmodule.restrictScalars
CommSemiring.toSemiring
Algebra.toSMul
Ideal
Submodule
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
IsScalarTower.left
Submodule.restrictScalars.congr_simp
Submodule.span_smul_eq
smulCommClass_self
Submodule.set_smul_eq_iSup
iSup_congr_Prop
iSup_image
map_iSup₂
FrameHomClass.tosSupHomClass
CompleteLatticeHomClass.toFrameHomClass
CompleteLatticeHom.instCompleteLatticeHomClass
smul_top_eq_map 📖mathematicalIdeal
CommSemiring.toSemiring
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Top.top
Submodule.instTop
Submodule.restrictScalars
Algebra.toSMul
IsScalarTower.right
map
RingHom
RingHom.instFunLike
algebraMap
IsScalarTower.left
IsScalarTower.right
smul_restrictScalars
smul_eq_mul
mul_top
instIsTwoSided
symm_apply_mem_of_equiv_iff 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
map
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comap_symm
mem_comap

Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
comap_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
Ideal.IsMaximal
Ideal.comap
Ideal.isMaximal_comap_iff_of_bijective
comap_piEvalRingHom 📖mathematicalIdeal.IsMaximal
Pi.semiring
Ideal.comap
RingHom
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
RingHom.instFunLike
Pi.evalRingHom
RingHom.instRingHomClass
RingHom.instRingHomClass
Ideal.isMaximal_iff
Ideal.ne_top_iff_one
ne_top
exists_inv
eq_or_ne
Function.update_self
Function.update_of_ne
MulZeroClass.zero_mul
zero_add
Ideal.add_mem
Ideal.mul_mem_left
map_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
Ideal.IsMaximal
Ideal.map
Ideal.isMaximal_map_iff_of_bijective
map_of_surjective_of_ker_le 📖mathematicalDFunLike.coe
Ideal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
Ideal.IsMaximal
Ideal.map
Ideal.map_eq_top_or_isMaximal_of_surjective
ne_top
sup_of_le_left
RingHom.ker_eq_comap_bot
Ideal.comap_top
Ideal.comap_map_of_surjective

Ideal.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
comap 📖mathematicalIdeal.IsPrime
Ideal.comap
Ideal.comap_ne_top
ne_top'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mem_or_mem'

Ideal.IsRadical

Theorems

NameKindAssumesProvesValidatesDepends On
comap 📖mathematicalIdeal.IsRadicalIdeal.comap
CommSemiring.toSemiring
radical
Ideal.comap_radical
Ideal.radical_isRadical

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_eq 📖mathematicalModule.annihilatorRingHomInvPair.ids
LE.le.antisymm
LinearMap.annihilator_le_of_surjective
surjective
LinearMap.annihilator_le_of_injective
injective

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_le_of_injective 📖mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Module.annihilator
Module.mem_annihilator
map_smul
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
map_zero
annihilator_le_of_surjective 📖mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Module.annihilator
Module.mem_annihilator
map_smul
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
map_zero

Module

Definitions

NameCategoryTheorems
annihilator 📖CompOp
31 mathmath: mem_annihilator, Submodule.annihilator_quotient, supportDim_eq_ringKrullDim_quotient_annihilator, mem_support_iff_of_finite, IsSemisimpleModule.jacobson_le_annihilator, isTorsionBySet_annihilator, IsSemisimpleModule.annihilator_isRadical, comap_annihilator, LinearMap.annihilator_le_of_injective, annihilator_eq_top_iff, instIsTwoSidedAnnihilator, Ideal.annihilator_quotient, annihilator_eq_bot, Polynomial.span_minpoly_eq_annihilator, annihilator_pi, associatedPrimes.minimalPrimes_annihilator_subset_associatedPrimes, Submodule.annihilator_top, support_eq_zeroLocus, IsSMulRegular.subsingleton_linearMap_iff, annihilator_dfinsupp, isTorsionBySet_iff_subset_annihilator, Ideal.bot_lt_annihilator_of_disjoint_nonZeroDivisors, annihilator_finsupp, LinearMap.annihilator_le_of_surjective, exists_ker_toSpanSingleton_eq_annihilator, IsSimpleModule.annihilator_isMaximal, LinearEquiv.annihilator_eq, isTorsionBy_iff_mem_annihilator, AEval.annihilator_eq_ker_aeval, annihilator_le_of_mem_support, annihilator_prod

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_dfinsupp 📖mathematicalannihilator
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.addCommMonoid
DFinsupp.module
iInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.ext
DFinsupp.single_apply
DFunLike.congr_fun
DFinsupp.ext
annihilator_eq_bot 📖mathematicalannihilator
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
FaithfulSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
le_bot_iff
sub_eq_zero
mem_annihilator
sub_smul
sub_self
zero_smul
annihilator_eq_top_iff 📖mathematicalannihilator
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
one_smul
mem_annihilator
Submodule.mem_top
top_le_iff
annihilator_finsupp 📖mathematicalannihilator
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Ideal.ext
Finsupp.smul_single
Finsupp.single_eq_same
Finsupp.ext
annihilator_pi 📖mathematicalannihilator
Pi.addCommMonoid
Pi.module
iInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.ext
Pi.single_eq_same
annihilator_prod 📖mathematicalannihilator
Prod.instAddCommMonoid
Prod.instModule
Ideal
Submodule.instMin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.ext
Zero.instNonempty
comap_annihilator 📖mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
annihilator
Ideal.ext
RingHom.instRingHomClass
algebraMap_smul
mem_annihilator 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
AddMonoidHom.ext

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
ker_ringHom 📖mathematicalRingHom.ker
RingHom
Semiring.toNonAssocSemiring
nonAssocSemiring
semiring
RingHom.instFunLike
RingHom.instRingHomClass
ringHom
iInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.ext
RingHom.instRingHomClass

RingEquiv

Definitions

NameCategoryTheorems
idealComapOrderIso 📖CompOp
2 mathmath: idealComapOrderIso_apply, idealComapOrderIso_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
idealComapOrderIso_apply 📖mathematicalDFunLike.coe
RelIso
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RelIso.instFunLike
idealComapOrderIso
Ideal.comap
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
idealComapOrderIso_symm_apply 📖mathematicalDFunLike.coe
OrderIso
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instFunLikeOrderIso
OrderIso.symm
idealComapOrderIso
Ideal.map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike

RingHom

Definitions

NameCategoryTheorems
ker 📖CompOp
164 mathmath: Polynomial.not_ker_le_map_C_of_surjective_of_quasiFiniteAt, KaehlerDifferential.kerCotangentToTensor_toCotangent, PrimeSpectrum.closure_range_comap, Polynomial.ker_mapRingHom, ker_evalRingHom, Polynomial.ker_evalRingHom, IsAdjoinRoot.mem_ker_map, smoothSheafCommRing.nonunits_stalk, AlgHom.ker_coe, IsLocalRing.ker_residue, algebraicIndependent_iff_ker_eq_bot, ker_eq_top_of_subsingleton, MvPolynomial.ker_map, Ideal.ker_algebraMap_residueField, Polynomial.fiberEquivQuotient_tmul, range_comap_of_surjective, quotientKerEquivOfSurjective_symm_apply, KaehlerDifferential.cotangentComplexBaseChange_tmul, PrimeSpectrum.denseRange_comap_iff_ker_le_nilRadical, liftOfSurjective_comp, TruncatedWittVector.iInf_ker_truncate, AlgebraicIndependent.repr_ker, range_specComap_of_surjective, AlgebraicGeometry.Scheme.ideal_ker_le_ker_ΓSpecIso_inv_comp, KaehlerDifferential.kerToTensor_apply, ker_equiv, liftOfSurjective_comp_apply, PrimeSpectrum.vanishingIdeal_range_comap, Algebra.Extension.lTensor_cotangentComplex_eq_cotangentComplexBaseChange, ker_rangeRestrict, quotientKerEquivOfSurjective_symm_comp, AlgebraicGeometry.Scheme.IdealSheafData.ideal_le_ker_glueDataObjι, ker_isMaximal_of_surjective, Algebra.Generators.map_toComp_ker, Ideal.ker_Pi_Quotient_mk, comap_ker, CharP.ker_intAlgebraMap_eq_span, ker_isRadical_iff_reduced_of_surjective, Ideal.kerLiftAlg_injective, Pi.ker_ringHom, Algebra.TensorProduct.map_ker, mem_ker, KaehlerDifferential.End_equiv_aux, AlgebraicGeometry.Scheme.ker_of_isAffine, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, AlgHom.comap_ker, Algebra.FinitePresentation.ker_fg_of_mvPolynomial, Ideal.instIsScalarTowerQuotientHPowKerRingHomAlgebraMapOfNat, smoothSheafCommRing.isUnit_stalk_iff, Polynomial.ker_constantCoeff, AlgHom.ker_rangeRestrict, Module.support_of_algebra, Ideal.quotientKerAlgEquivOfRightInverse_symm_apply, AlgHom.ker_coe_equiv, NumberField.RingOfIntegers.ker_algebraMap_eq_bot, Algebra.Generators.sq_ker_comp_le_ker_compLocalizationAwayAlgHom, AlgHom.toKerIsLocalization_apply, Algebra.FormallySmooth.iff_of_surjective, IsLocalRing.ker_eq_maximalIdeal, AlgebraicGeometry.Scheme.Hom.ker_apply, Ideal.quotientKerAlgEquivOfRightInverse_apply, IsPerfectClosure.ker_eq, AlgebraicGeometry.isOpenImmersion_SpecMap_iff_of_surjective, DoubleQuot.ker_quotQuotMk, WittVector.mem_ker_truncate, toKerIsLocalization_apply, minpoly.ker_aeval_eq_span_minpoly, AlgebraicGeometry.Scheme.Hom.ideal_ker_le, AdicCompletion.kerProj_surjective, ContinuousMap.AlgHom.closure_ker_inter, Algebra.Extension.cotangentComplexBaseChange_eq_lTensor_cotangentComplex, tensorKaehlerQuotKerSqEquiv_symm_tmul_D, Algebra.FinitePresentation.ker_fG_of_surjective, instIsTwoSidedKer, WittVector.ker_map_le_ker_mk_comp_ghostComponent, Ideal.kerLiftAlg_toRingHom, tensorKaehlerQuotKerSqEquiv_tmul_D, ker_eq_bot_iff_eq_zero, Ideal.quotientKerAlgEquivOfSurjective_apply, liftOfRightInverse_comp_apply, quotientKerEquivOfRightInverse.Symm.apply, transcendental_iff_ker_eq_bot, Ideal.Quotient.mkₐ_ker, Algebra.FormallyEtale.Algebra.FormallyEtale.iff_of_surjective, quotientKerEquivOfSurjective_apply_mk, PrimeSpectrum.range_comap_snd, Ideal.injective_lift_iff, Ideal.ker_le_comap, IsPRadical.ker_le, Ideal.Quotient.factor_ker, DoubleQuot.ker_quotLeftToQuotSup, ker_coe_toRingHom, ker_comp_of_injective, KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange, Polynomial.not_ker_le_map_C_of_surjective_of_weaklyQuasiFiniteAt, Ideal.minimalPrimes_map_of_surjective, one_notMem_ker, MvPolynomial.ker_eval₂Hom_universalFactorizationMap, pNilradical_le_ker_of_perfectRing, PadicInt.ker_toZModPow, AdicCompletion.kerProj_of, DividedPowers.isSubDPIdeal_ker, kerLift_injective, Algebra.FormallySmooth.iff_split_surjection, AlgebraicGeometry.Scheme.IdealSheafData.ker_subschemeι_app, liftOfRightInverse_comp, injective_iff_ker_eq_bot, ContinuousMap.nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, MvPolynomial.ker_mapAlgHom, WeakDual.ker_isMaximal, ZMod.ker_intCastRingHom, ker_eq_comap_bot, ker_isPrime, IsLocalization.ker_map, Ideal.quotientKerAlgEquivOfSurjective_symm_apply, Ideal.quotientKerAlgEquivOfSurjective_mk, Ideal.map_eq_iff_sup_ker_eq_of_surjective, Ideal.ker_quotientMap_mk, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, Algebra.TensorProduct.lTensor_ker, PowerSeries.ker_coeff_eq_max_ideal, ker_coe_equiv, Algebra.Generators.ker_eq_ker_aeval_val, Algebra.Generators.ker_ofAlgHom, AlgHom.ker_kerSquareLift, Module.AEval.annihilator_top_eq_ker_aeval, quotientKerEquivOfRightInverse.apply, ContinuousMap.ker_evalStarAlgHom_inter_adjoin_id, Ideal.KerLift.map_smul, PadicInt.ker_toZMod, Algebra.FinitePresentation.out, FaithfulSMul.ker_algebraMap_eq_bot, ker_equiv_comp, AlgHom.toKerIsLocalization_isLocalizedModule, Ideal.comap_map_of_surjective', WittVector.ker_constantCoeff, Ideal.mk_ker, KaehlerDifferential.range_kerCotangentToTensor, sub_mem_ker_iff, AlgebraicGeometry.Scheme.IdealSheafData.ker_glueDataObjι_appTop, CharP.quotient_iff_le_ker_natCast, Algebra.FormallySmooth.exists_kerProj_comp_eq_id, ContinuousMap.ker_evalStarAlgHom_eq_closure_adjoin_id, isPRadical_iff, ker_eq, AlgebraicGeometry.Scheme.Hom.toImage_app, Algebra.FormallyEtale.iff_of_surjective, PrimeSpectrum.range_comap_fst, AlgHom.kerSquareLift_mk, IsPRadical.ker_le', Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, kerLift_mk, minpoly.ker_eval, toKerIsLocalization_isLocalizedModule, Module.AEval.annihilator_eq_ker_aeval, Algebra.TensorProduct.rTensor_ker, HomogeneousIdeal.toIdeal_irrelevant, IsAdjoinRoot.ker_map, Algebra.FormallySmooth.iff_split_injection, Ideal.kerLiftAlg_mk, Ideal.map_eq_bot_iff_le_ker, derivationQuotKerSq_mk, ker_rangeSRestrict, Algebra.FinitePresentation.iff_quotient_mvPolynomial'
liftOfRightInverse 📖CompOp
3 mathmath: eq_liftOfRightInverse, liftOfRightInverse_comp_apply, liftOfRightInverse_comp
liftOfRightInverseAux 📖CompOp
1 mathmath: liftOfRightInverseAux_comp_apply
liftOfSurjective 📖CompOp
3 mathmath: liftOfSurjective_comp, liftOfSurjective_comp_apply, eq_liftOfSurjective

Theorems

NameKindAssumesProvesValidatesDepends On
comap_ker 📖mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
instFunLike
instRingHomClass
ker
comp
instRingHomClass
ker_eq_comap_bot
Ideal.comap_comap
eq_liftOfRightInverse 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
comp
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
liftOfRightInverse
instRingHomClass
Equiv.apply_symm_apply
eq_liftOfSurjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
comp
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
liftOfSurjective
instRingHomClass
eq_liftOfRightInverse
injective_iff_ker_eq_bot 📖mathematicalDFunLike.coe
ker
Ring.toSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.ext'_iff
ker_eq
Set.ext_iff
injective_iff_map_eq_zero'
RingHomClass.toAddMonoidHomClass
instIsTwoSidedKer 📖mathematicalIdeal.IsTwoSided
ker
Ideal.instIsTwoSidedComap
Ideal.instIsTwoSidedBot
ker_coe_equiv 📖mathematicalker
RingHom
Semiring.toNonAssocSemiring
instFunLike
instRingHomClass
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Ideal.ext
instRingHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
ker_coe_toRingHom 📖mathematicalker
RingHom
Semiring.toNonAssocSemiring
instFunLike
instRingHomClass
RingHomClass.toRingHom
instRingHomClass
ker_comp_of_injective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
ker
instRingHomClass
comp
instRingHomClass
comap_ker
injective_iff_ker_eq_bot
ker.eq_1
ker_eq 📖mathematicalSetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
Set.preimage
DFunLike.coe
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ker_eq_bot_iff_eq_zero 📖mathematicalker
Ring.toSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
injective_iff_ker_eq_bot
ker_eq_comap_bot 📖mathematicalker
Ideal.comap
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker_eq_top_of_subsingleton 📖mathematicalker
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
eq_top_iff
ker_equiv 📖mathematicalker
EquivLike.toFunLike
RingEquivClass.toRingHomClass
Semiring.toNonAssocSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.ext
RingEquivClass.toRingHomClass
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
ker_equiv_comp 📖mathematicalker
RingHom
Semiring.toNonAssocSemiring
instFunLike
instRingHomClass
comp
RingEquiv.toRingHom
instRingHomClass
comap_ker
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.toRingHom_eq_coe
ker_coe_equiv
ker.eq_1
ker_evalRingHom 📖mathematicalker
RingHom
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.semiring
instFunLike
instRingHomClass
Pi.evalRingHom
Ideal.span
Set
Set.instSingletonSet
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Pi.instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
le_antisymm
instRingHomClass
Ideal.mem_span_singleton
mul_add
Distrib.leftDistribClass
sub_mul
one_mul
MulZeroClass.mul_zero
Pi.single_zero
sub_zero
Pi.single_eq_same
mul_one
sub_self
add_zero
ker_isMaximal_of_surjective 📖mathematicalDFunLike.coeIdeal.IsMaximal
Ring.toSemiring
ker
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Ideal.bot_isMaximal
Ideal.comap_isMaximal_of_surjective
ker_isPrime 📖mathematicalIdeal.IsPrime
ker
Ideal.IsPrime.comap
Ideal.isPrime_bot
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
ker_ne_top 📖Ideal.ne_top_iff_one
one_notMem_ker
ker_rangeRestrict 📖mathematicalker
Subring
SetLike.instMembership
Subring.instSetLike
range
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
Subring.toRing
instFunLike
instRingHomClass
rangeRestrict
Ideal.ext
instRingHomClass
ker_rangeSRestrict 📖mathematicalker
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Subsemiring.instSetLike
rangeS
RingHom
Subsemiring.toNonAssocSemiring
Subsemiring.toSemiring
instFunLike
instRingHomClass
rangeSRestrict
Ideal.ext
instRingHomClass
liftOfRightInverseAux_comp_apply 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
liftOfRightInverseAuxinstRingHomClass
AddMonoidHom.liftOfRightInverse_comp_apply
liftOfRightInverse_comp 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
comp
Equiv
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
EquivLike.toFunLike
Equiv.instEquivLike
liftOfRightInverse
instRingHomClass
ext
liftOfRightInverse_comp_apply
liftOfRightInverse_comp_apply 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
Equiv
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
EquivLike.toFunLike
Equiv.instEquivLike
liftOfRightInverse
instRingHomClass
liftOfRightInverseAux_comp_apply
liftOfSurjective_comp 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
comp
Equiv
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
EquivLike.toFunLike
Equiv.instEquivLike
liftOfSurjective
instRingHomClass
liftOfRightInverse_comp
liftOfSurjective_comp_apply 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
Equiv
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
ker
instRingHomClass
EquivLike.toFunLike
Equiv.instEquivLike
liftOfSurjective
instRingHomClass
liftOfRightInverse_comp_apply
mem_ker 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
DFunLike.coe
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ker.eq_1
Ideal.mem_comap
Submodule.mem_bot
one_notMem_ker 📖mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
mem_ker
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
one_ne_zero
NeZero.one
sub_mem_ker_iff 📖mathematicalIdeal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
ker
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
mem_ker
map_sub
RingHomClass.toAddMonoidHomClass
sub_eq_zero

Submodule

Definitions

NameCategoryTheorems
annihilator 📖CompOp
28 mathmath: le_annihilator_iff, isInternal_prime_power_torsion_of_pid, mul_annihilator, annihilator_iSup, annihilator_mul, mem_annihilator', mem_annihilator, annihilator_smul, annihilator_map_mkQ_eq_colon, annihilator_bot, Module.mem_support_iff_exists_annihilator, annihilator_top_inter_nonZeroDivisors, annihilator_span_singleton, annihilator_mono, bot_colon', Module.isTorsionBySet_annihilator_top, annihilator_span, mem_annihilator_span, torsion_gc, IsAssociatedPrime.annihilator_le, isInternal_prime_power_torsion, annihilator_top, Module.AEval.annihilator_top_eq_ker_aeval, coe_torsion_eq_annihilator_ne_bot, mem_annihilator_span_singleton, Module.mem_support_iff_of_span_eq_top, bot_colon, annihilator_eq_top_iff

Theorems

NameKindAssumesProvesValidatesDepends On
annihilator_bot 📖mathematicalannihilator
Bot.bot
Submodule
instBot
Top.top
Ideal
instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
top_le_iff
mem_annihilator
smul_zero
annihilator_eq_top_iff 📖mathematicalannihilator
Top.top
Ideal
instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule
instBot
annihilator.eq_1
Module.annihilator_eq_top_iff
subsingleton_iff_eq_bot
annihilator_iSup 📖mathematicalannihilator
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
iInf
Ideal
instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
le_antisymm
le_iInf
annihilator_mono
le_iSup
mem_annihilator
iSup_induction
mem_iInf
smul_zero
smul_add
add_zero
annihilator_mono 📖mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Ideal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
mem_annihilator
annihilator_mul 📖mathematicalIdeal
mul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
annihilator
Bot.bot
instBot
annihilator_smul
annihilator_smul 📖mathematicalIdeal
Submodule
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
annihilator
Bot.bot
instBot
IsScalarTower.left
eq_bot_iff
smul_le
mem_annihilator
annihilator_span 📖mathematicalannihilator
CommSemiring.toSemiring
span
iInf
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.Elem
instInfSet
LinearMap.ker
RingHom.id
LinearMap.toSpanSingleton
Set
Set.instMembership
Ideal.ext
annihilator_span_singleton 📖mathematicalannihilator
CommSemiring.toSemiring
span
Set
Set.instSingletonSet
LinearMap.ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
LinearMap.toSpanSingleton
annihilator_span
ciInf_unique
annihilator_top 📖mathematicalannihilator
Top.top
Submodule
instTop
Module.annihilator
LinearEquiv.annihilator_eq
le_annihilator_iff 📖mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
Submodule
instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
instBot
IsScalarTower.left
instIsConcreteLE
mem_annihilator 📖mathematicalIdeal
SetLike.instMembership
setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
mem_annihilator' 📖mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
RingHom.id
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
LinearMap.id
Bot.bot
instBot
smulCommClass_self
mem_annihilator
mem_bot
mem_annihilator_span 📖mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
span
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
mem_annihilator
subset_span
Subtype.prop
span_induction
smul_zero
smul_add
zero_add
SMulCommClass.smul_comm
smulCommClass_self
mem_annihilator_span_singleton 📖mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
annihilator
span
Set
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
mul_annihilator 📖mathematicalIdeal
CommSemiring.toSemiring
mul
Semiring.toModule
IsScalarTower.right
Algebra.id
annihilator
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Bot.bot
instBot
IsScalarTower.right
mul_comm
IsScalarTower.left
annihilator_mul

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
element_smul_restrictScalars 📖mathematicalSubmodule.restrictScalars
CommSemiring.toSemiring
Algebra.toSMul
Submodule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule.pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submodule.pointwiseDistribMulAction
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
SetLike.coe_injective
smulCommClass_self
algebraMap_smul
instIsPrincipalMapRingHom 📖mathematicalSubmodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
Submodule.IsPrincipal.principal
Ideal.span.eq_1
Set.image_singleton
Ideal.map_span
RingHom.instRingHomClass
Ideal.submodule_span_eq
instIsTwoSidedAnnihilator 📖mathematicalIdeal.IsTwoSided
Module.annihilator
RingHom.instIsTwoSidedKer

---

← Back to Index