Documentation Verification Report

Maximal

πŸ“ Source: Mathlib/RingTheory/Ideal/Maximal.lean

Statistics

MetricCount
DefinitionsIsMaximal, Maximal, Maximal
3
Theoremscoprime_of_ne, eq_of_le, exists_inv, isPrime, isPrime', ne_top, out, bot_isMaximal, exists_disjoint_powers_of_span_eq_top, exists_le_maximal, exists_le_prime_disjoint, exists_le_prime_notMem_of_isIdempotentElem, exists_maximal, instIsCoatomic, instNontrivial, isMaximal_def, isMaximal_iff, isPrime_iff_of_isPrincipalIdealRing, isPrime_iff_of_isPrincipalIdealRing_of_noZeroDivisors, isPrime_of_maximally_disjoint, maximal_of_no_maximal, ne_top_iff_exists_maximal, sInf_isPrime_of_isChain, span_singleton_lt_span_singleton, span_singleton_prime
25
Total28

Ideal

Definitions

NameCategoryTheorems
IsMaximal πŸ“–CompData
104 mathmath: eq_jacobson_iff_sInf_maximal, IsMaximal.map_bijective, exists_maximal, isMaximal_of_isIntegral_of_isMaximal_comap', isMaximal_of_mem_primesOver, PrimeSpectrum.discreteTopology_iff_finite_isMaximal_and_sInf_le_nilradical, IsDedekindDomain.HeightOneSpectrum.isMaximal, jacobson.isMaximal, IsMaximal.of_liesOver_isMaximal, AlgebraicClosure.maxIdeal.isMaximal, map_eq_top_or_isMaximal_of_surjective, comap_isMaximal_of_equiv, IsIntegralClosure.isMaximal_of_isMaximal_comap, IsLocalRing.maximal_ideal_unique, exists_maximal_ideal_liesOver_of_isIntegral, jacobson_bot_polynomial_le_sInf_map_maximal, IsPrime.isMaximal, isMaximal_of_isPrime, RingHom.ker_isMaximal_of_surjective, Ring.krullDimLE_zero_and_isLocalRing_tfae, MaximalSpectrum.isMaximal, PrimeSpectrum.isMax_iff, IsLocalization.isMaximal_iff_isMaximal_disjoint, isJacobsonRing_iff_sInf_maximal, AlgebraicGeometry.IsAffineOpen.primeIdealOf_isMaximal_of_isClosed, Ring.krullDimLE_one_iff_of_noZeroDivisors, IsMaximal.map_of_surjective_of_ker_le, DualNumber.isMaximal_span_singleton_eps, IsMaximal.comap_bijective, Ring.krullDimLE_zero_iff, isMaximal_iff_of_bijective, Int.ideal_span_isMaximal_of_prime, exists_isMaximal_height, Ring.krullDimLE_one_iff, sup_primeHeight_of_maximal_eq_ringKrullDim, IsMaximal.comap_piEvalRingHom, ContinuousMap.ideal_isMaximal_iff, comap_isMaximal_of_surjective, AdjoinRoot.span_maximal_of_irreducible, exists_ideal_liesOver_maximal_of_isIntegral, MaximalSpectrum.range_asIdeal, MaximalSpectrum.equivSubtype_symm_apply_asIdeal, PrimeSpectrum.isClosed_singleton_iff_isMaximal, exists_max_ideal_of_mem_nonunits, IsPrime.to_maximal_ideal, isMaximal_of_primeHeight_eq_ringKrullDim, isMaximal_iff, IsMaximal.of_isLocalization_of_disjoint, Polynomial.isMaximal_comap_C_of_isJacobsonRing, IntegralClosure.isMaximal_of_isMaximal_comap, MaximalSpectrum.equivSubtype_apply_coe, eq_jacobson_iff_notMem, Polynomial.isMaximal_comap_C_of_isMaximal, isSimpleModule_iff_quot_maximal, IsLocalization.AtPrime.isMaximal_map, IsLocalRing.maximalIdeal.isMaximal, IsMaximal.of_isMaximal_liesOver, IsLocalRing.not_isLocalRing_tfae, IsArtinianRing.isMaximal_of_isPrime, PrimeSpectrum.stableUnderSpecialization_singleton, PrincipalIdealRing.isMaximal_of_irreducible, Ring.KrullDimLE.minimalPrimes_eq_setOf_isMaximal, bot_isMaximal, isMaximal_comap_of_isIntegral_of_isMaximal, Ring.DimensionLEOne.maximalOfPrime, WeakDual.ker_isMaximal, ne_top_iff_exists_maximal, IsLocalRing.isMaximal_iff, map_isMaximal_of_equiv, isMaximal_comap_iff_of_bijective, Module.exists_ltSeries_support_isMaximal_last_of_ltSeries_support, Quotient.maximal_of_isField, IsLocalization.isMaximal_of_isMaximal_disjoint, exists_ideal_over_maximal_of_isIntegral, exists_le_maximal, isMaximal_map_iff_of_bijective, IsArtinianRing.isPrime_iff_isMaximal, PrimeSpectrum.isMaximal_of_toPiLocalization_surjective, primesOver.isMaximal, Ring.isField_iff_maximal_bot, IsSimpleModule.annihilator_isMaximal, ContinuousMap.idealOf_compl_singleton_isMaximal, IsPrime.isMaximal', isLocal_iff, MvPolynomial.instIsMaximalVanishingIdealSingletonForallSet, Ring.exists_maximal_of_not_isField, bot_quotient_isMaximal_iff, MixedCharZero.reduce_to_maximal_ideal, isMaximal_iff_isPrime, isMaximal_comap_of_isIntegral_of_isMaximal', Ring.jacobson_eq_sInf_isMaximal, IsMaximal.under, MvPolynomial.isMaximal_iff_eq_vanishingIdeal_singleton, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, ContinuousMap.idealOfSet_isMaximal_iff, instIsMaximalOfIsPrimeOfKrullDimLEOfNatNat, Quotient.maximal_ideal_iff_isField_quotient, IsLocal.out, IsSimpleModule.ker_toSpanSingleton_isMaximal, Ring.krullDimLE_one_iff_of_isPrime_bot, comap_jacobson, isMaximal_of_isIntegral_of_isMaximal_comap, IsArtinianRing.setOf_isMaximal_finite, isMaximal_def

Theorems

NameKindAssumesProvesValidatesDepends On
bot_isMaximal πŸ“–mathematicalβ€”IsMaximal
DivisionSemiring.toSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”eq_top_iff_one
NeZero.one
GroupWithZero.toNontrivial
eq_bot_or_top
ne_of_gt
exists_disjoint_powers_of_span_eq_top πŸ“–mathematicalspan
CommSemiring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submodule.setLike
Submonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submonoid.instSetLike
Submonoid.powers
β€”exists_le_maximal
IsMaximal.out
Set.not_subset
span_le
eq_top_iff
Set.disjoint_left
IsPrime.mem_of_pow_mem
IsMaximal.isPrime
exists_le_maximal πŸ“–mathematicalβ€”IsMaximal
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsCoatomic.eq_top_or_exists_le_coatom
instIsCoatomic
exists_le_prime_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
IsPrime
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”zorn_le_nonemptyβ‚€
isEmpty_or_nonempty
Set.disjoint_left
Submodule.mem_iSup_of_directed
IsChain.directed
instReflLe
sSup_eq_iSup'
le_sSup
isPrime_of_maximally_disjoint
Maximal.not_prop_of_gt
exists_le_prime_notMem_of_isIdempotentElem πŸ“–mathematicalIsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
IsPrime
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”Set.disjoint_right
IsIdempotentElem.coe_powers
ne_top_iff_one
Submodule.mem_top
exists_le_prime_disjoint
Submonoid.mem_powers
exists_maximal πŸ“–mathematicalβ€”IsMaximalβ€”exists_le_maximal
bot_ne_top
Submodule.instNontrivial
instIsCoatomic πŸ“–mathematicalβ€”IsCoatomic
Ideal
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instOrderTop
β€”CompleteLattice.coatomic_of_top_compact
isCompactElement_top
instNontrivial πŸ“–mathematicalβ€”Nontrivial
Ideal
β€”exists_maximal
nontrivial_of_ne
isMaximal_def πŸ“–mathematicalβ€”IsMaximal
IsCoatom
Ideal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instOrderTop
β€”IsMaximal.out
isMaximal_iff πŸ“–mathematicalβ€”IsMaximal
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”instIsConcreteLE
isPrime_iff_of_isPrincipalIdealRing πŸ“–mathematicalβ€”IsPrime
CommSemiring.toSemiring
Prime
CommSemiring.toCommMonoidWithZero
span
Set
Set.instSingletonSet
β€”Submodule.IsPrincipal.principal
IsPrincipalIdealRing.principal
span_singleton_prime
span_singleton_zero
Prime.ne_zero
isPrime_iff_of_isPrincipalIdealRing_of_noZeroDivisors πŸ“–mathematicalβ€”IsPrime
CommSemiring.toSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prime
CommSemiring.toCommMonoidWithZero
span
Set
Set.instSingletonSet
β€”isPrime_iff_of_isPrincipalIdealRing
isPrime_bot
isPrime_of_maximally_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
IsPrimeβ€”Submonoid.one_mem
Submodule.lt_sup_iff_notMem
Disjoint.ne_of_mem
add_mem
mul_mem_left
mul_mem_right
instIsTwoSided
Submonoid.mul_mem
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
maximal_of_no_maximal πŸ“–mathematicalIsMaximal
Ideal
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Top.top
Submodule.instTop
β€”exists_le_maximal
lt_of_lt_of_le
ne_top_iff_exists_maximal πŸ“–mathematicalβ€”IsMaximal
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”exists_le_maximal
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_and_eq
top_le_iff
IsMaximal.ne_top
sInf_isPrime_of_isChain πŸ“–mathematicalSet.Nonempty
Ideal
IsChain
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsPrime
InfSet.sInf
Submodule.instInfSet
β€”IsPrime.ne_top
eq_top_iff
Eq.trans_le
sInf_le
mem_sInf
Mathlib.Tactic.Push.not_forall_eq
IsChain.total
instReflLe
IsPrime.mem_or_mem
span_singleton_lt_span_singleton πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
Set
Set.instSingletonSet
DvdNotUnit
CommSemiring.toCommMonoidWithZero
β€”lt_iff_le_not_ge
span_singleton_le_span_singleton
dvd_and_not_dvd_iff
IsDomain.toIsCancelMulZero
span_singleton_prime πŸ“–mathematicalβ€”IsPrime
CommSemiring.toSemiring
span
Set
Set.instSingletonSet
Prime
CommSemiring.toCommMonoidWithZero
β€”β€”

Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_of_ne πŸ“–mathematicalβ€”Ideal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Top.top
Submodule.instTop
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_of_le
ne_top
LE.le.trans_eq
le_sup_left
le_sup_right
eq_of_le πŸ“–β€”Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”eq_iff_le_not_lt
out
exists_inv πŸ“–mathematicalIdeal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Ideal.isMaximal_iff
Ideal.mem_span_insert
Set.Subset.trans
Set.subset_insert
Ideal.subset_span
Set.mem_insert
Ideal.span_eq
isPrime πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
β€”out
Set.Subset.trans
Set.subset_insert
Ideal.subset_span
Set.mem_insert
Ideal.isMaximal_iff
Submodule.mem_span_insert
mul_one
mul_add
Distrib.leftDistribClass
mul_comm
smul_eq_mul
mul_assoc
Submodule.add_mem
Ideal.mul_mem_left
Submodule.smul_mem
Submodule.span_eq
isPrime' πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
β€”isPrime
ne_top πŸ“–β€”β€”β€”β€”Ideal.isMaximal_def
out πŸ“–mathematicalβ€”IsCoatom
Ideal
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instOrderTop
β€”β€”

LinearIndependent

Definitions

NameCategoryTheorems
Maximal πŸ“–MathDef
2 mathmath: Module.Basis.maximal, maximal_iff

(root)

Definitions

NameCategoryTheorems
Maximal πŸ“–MathDef
94 mathmath: not_maximal_subset_iff, MaximalFor.maximal_of_strictMonoOn, SimpleGraph.ConnectedComponent.maximal_connected_induce_supp, Matroid.isBase_compl_iff_maximal_disjoint_isBase, IndepMatroid.matroid_IsBase, minimal_mem_image_antitone_iff, maximal_mem_image_antitone_iff, MinimalFor.maximal_of_strictAntiOn, Maximal.dual, DirectedOn.maximal_iff_isGreatest, exists_maximal_ge_of_wellFoundedGT, OrderIso.image_setOf_maximal, OrderEmbedding.inter_preimage_setOf_maximal_eq_of_subset, maximal_mem_Ioc, maximal_true_subtype, isTranscendenceBasis_iff_maximal, maximal_false, SimpleGraph.isMaximalClique_iff, SimpleGraph.isMaximalIndepSet_compl, SimpleGraph.ConnectedComponent.maximal_connected_induce_iff, maximal_gt_iff, Finset.exists_le_maximal, image_monotone_setOf_maximal_mem, maximal_mem_Icc, maximal_iff_forall_gt, exists_maximal_algebraicIndependent, SimpleGraph.Connected.maximal_le_isAcyclic_iff_isTree, maximal_and_iff_left_of_imp, OrderEmbedding.maximal_apply_iff, Order.coheight_eq_coe_iff_maximal_le_coheight, SimpleGraph.IsMaximumIndepSet.isMaximalIndepSet, maximal_mem_iff, minimal_toDual, maximal_mem_image_monotone_iff, SimpleGraph.ConnectedComponent.maximal_connected_toSubgraph, Set.Finite.exists_le_maximal, zorn_leβ‚€, setOf_maximal_subset, OrderEmbedding.maximal_mem_image_iff, Set.maximal_iff_forall_ssuperset, Set.maximal_iff_forall_insert, maximal_ge_iff, maximal_toDual, maximal_and_iff_right_of_imp, maximal_iff_eq, IsAntichain.maximal_mem_lowerClosure_iff_mem, image_antitone_setOf_maximal_mem, SimpleGraph.isMaximalClique_compl, maximal_maximal, zorn_subset, OrderEmbedding.image_setOf_maximal, maximal_true, Ideal.exists_maximal_not_isPrincipal, OrderEmbedding.maximal_apply_mem_inter_range_iff, Finset.exists_maximal, Set.Subsingleton.maximal_mem_iff, maximal_iff_maximal_of_imp_of_forall, Order.IsOfFiniteCharacter.exists_maximal, not_maximal_iff, image_antitone_setOf_minimal_mem, SimpleGraph.IsMaximumClique.isMaximalClique, Matroid.isBasis_iff_maximal, zorn_subset_nonempty, maximal_subset_iff, SimpleGraph.maximal_isAcyclic_iff_reachable_eq, Set.Finite.exists_maximal, SimpleGraph.ConnectedComponent.maximal_subgraph_connected_iff, zorn_le_nonemptyβ‚€, IsGreatest.maximal_iff, not_maximal_iff_exists_gt, SimpleGraph.maximal_isAcyclic_iff_isTree, SimpleGraph.isMaximalIndepSet_iff, IsAntichain.maximal_mem_iff, image_antitone_setOf_minimal, maximal_subtype, IsGreatest.maximal, maximal_iff, exists_maximal_of_wellFoundedGT, image_antitone_setOf_maximal, maximal_subset_iff', maximal_eq_iff, Matroid.isBase_iff_maximal_indep, maximal_iff_isGreatest, SimpleGraph.exists_maximal_isAcyclic_of_le_isAcyclic, Minimal.of_dual, maximal_le_iff, Finset.maximal_iff_forall_insert, irreducibleComponents_eq_maximals_closed, minimal_mem_image_antitone, setOf_maximal_antichain, Finite.exists_le_maximal, maximal_iff_isMax, image_monotone_setOf_maximal, maximalFor_id

---

← Back to Index