Maximal π | MathDef | 94 mathmath: not_maximal_subset_iff, MaximalFor.maximal_of_strictMonoOn, SimpleGraph.ConnectedComponent.maximal_connected_induce_supp, Matroid.isBase_compl_iff_maximal_disjoint_isBase, IndepMatroid.matroid_IsBase, minimal_mem_image_antitone_iff, maximal_mem_image_antitone_iff, MinimalFor.maximal_of_strictAntiOn, Maximal.dual, DirectedOn.maximal_iff_isGreatest, exists_maximal_ge_of_wellFoundedGT, OrderIso.image_setOf_maximal, OrderEmbedding.inter_preimage_setOf_maximal_eq_of_subset, maximal_mem_Ioc, maximal_true_subtype, isTranscendenceBasis_iff_maximal, maximal_false, SimpleGraph.isMaximalClique_iff, SimpleGraph.isMaximalIndepSet_compl, SimpleGraph.ConnectedComponent.maximal_connected_induce_iff, maximal_gt_iff, Finset.exists_le_maximal, image_monotone_setOf_maximal_mem, maximal_mem_Icc, maximal_iff_forall_gt, exists_maximal_algebraicIndependent, SimpleGraph.Connected.maximal_le_isAcyclic_iff_isTree, maximal_and_iff_left_of_imp, OrderEmbedding.maximal_apply_iff, Order.coheight_eq_coe_iff_maximal_le_coheight, SimpleGraph.IsMaximumIndepSet.isMaximalIndepSet, maximal_mem_iff, minimal_toDual, maximal_mem_image_monotone_iff, SimpleGraph.ConnectedComponent.maximal_connected_toSubgraph, Set.Finite.exists_le_maximal, zorn_leβ, setOf_maximal_subset, OrderEmbedding.maximal_mem_image_iff, Set.maximal_iff_forall_ssuperset, Set.maximal_iff_forall_insert, maximal_ge_iff, maximal_toDual, maximal_and_iff_right_of_imp, maximal_iff_eq, IsAntichain.maximal_mem_lowerClosure_iff_mem, image_antitone_setOf_maximal_mem, SimpleGraph.isMaximalClique_compl, maximal_maximal, zorn_subset, OrderEmbedding.image_setOf_maximal, maximal_true, Ideal.exists_maximal_not_isPrincipal, OrderEmbedding.maximal_apply_mem_inter_range_iff, Finset.exists_maximal, Set.Subsingleton.maximal_mem_iff, maximal_iff_maximal_of_imp_of_forall, Order.IsOfFiniteCharacter.exists_maximal, not_maximal_iff, image_antitone_setOf_minimal_mem, SimpleGraph.IsMaximumClique.isMaximalClique, Matroid.isBasis_iff_maximal, zorn_subset_nonempty, maximal_subset_iff, SimpleGraph.maximal_isAcyclic_iff_reachable_eq, Set.Finite.exists_maximal, SimpleGraph.ConnectedComponent.maximal_subgraph_connected_iff, zorn_le_nonemptyβ, IsGreatest.maximal_iff, not_maximal_iff_exists_gt, SimpleGraph.maximal_isAcyclic_iff_isTree, SimpleGraph.isMaximalIndepSet_iff, IsAntichain.maximal_mem_iff, image_antitone_setOf_minimal, maximal_subtype, IsGreatest.maximal, maximal_iff, exists_maximal_of_wellFoundedGT, image_antitone_setOf_maximal, maximal_subset_iff', maximal_eq_iff, Matroid.isBase_iff_maximal_indep, maximal_iff_isGreatest, SimpleGraph.exists_maximal_isAcyclic_of_le_isAcyclic, Minimal.of_dual, maximal_le_iff, Finset.maximal_iff_forall_insert, irreducibleComponents_eq_maximals_closed, minimal_mem_image_antitone, setOf_maximal_antichain, Finite.exists_le_maximal, maximal_iff_isMax, image_monotone_setOf_maximal, maximalFor_id
|