Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Ideal/MinimalPrime/Basic.lean

Statistics

MetricCount
DefinitionsminimalPrimes, minimalPrimes
2
Theoremseq_bot_of_minimalPrimes_eq_empty, exists_minimalPrimes_le, map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes, mem_minimalPrimes_sup, minimalPrimes_eq_empty_iff, minimalPrimes_eq_subsingleton, minimalPrimes_eq_subsingleton_self, minimalPrimes_isPrime, minimalPrimes_top, nonempty_minimalPrimes, radical_minimalPrimes, sInf_minimalPrimes, minimalPrimes_eq_singleton_bot, minimalPrimes_eq_minimals
14
Total16

Ideal

Definitions

NameCategoryTheorems
minimalPrimes πŸ“–CompOp
24 mathmath: IsLocalization.minimalPrimes_map, height_le_iff_exists_minimalPrimes, exists_finset_card_eq_height_of_isNoetherianRing, minimalPrimes_top, mem_minimalPrimes_of_height_eq, minimalPrimes_eq_subsingleton, nonempty_minimalPrimes, finite_minimalPrimes_of_isNoetherianRing, IsMinimalPrimaryDecomposition.minimalPrimes_subset_image_radical, IsLocalization.minimalPrimes_comap, Ring.KrullDimLE.mem_minimalPrimes_iff_le_of_isPrime, minimalPrimes_eq_comap, exists_minimalPrimes_le, minimalPrimes_map_of_surjective, Ring.KrullDimLE.mem_minimalPrimes_iff, Module.associatedPrimes.minimalPrimes_annihilator_subset_associatedPrimes, minimalPrimes_eq_subsingleton_self, comap_minimalPrimes_eq_of_surjective, mem_minimalPrimes_of_primeHeight_eq_height, radical_minimalPrimes, minimalPrimes_comap_subset, minimalPrimes_eq_empty_iff, sInf_minimalPrimes, iUnion_minimalPrimes

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_minimalPrimes_eq_empty πŸ“–mathematicalminimalPrimes
Set
Ideal
CommSemiring.toSemiring
Set.instEmptyCollection
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”nonempty_minimalPrimes
Set.notMem_empty
exists_minimalPrimes_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instMembership
minimalPrimes
β€”zorn_le_nonemptyβ‚€
sInf_isPrime_of_isChain
IsChain.symm
OrderDual.ofDual_toDual
le_sInf_iff
OrderDual.le_toDual
sInf_le
Maximal.prop
Maximal.le_of_ge
map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
map
RingHom
RingHom.instFunLike
algebraMap
Quotient.semiring
Quotient.commSemiring
Quotient.ring
instIsTwoSided_1
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
β€”instIsTwoSided_1
sup_le_iff
RingHom.instRingHomClass
map_le_iff_le_comap
under_def
over_def
IsPrime.under
le_trans
le_comap_map
comap_mono
LiesOver.over
isPrime_map_quotientMk_of_isPrime
map_mono
comap_map_quotientMk
sup_of_le_right
mem_minimalPrimes_sup πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
Quotient.semiring
Set
Quotient.commSemiring
Set.instMembership
minimalPrimes
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
β€”instIsTwoSided_1
sup_le_iff
RingHom.instRingHomClass
comap_map_quotientMk
sup_of_le_right
comap_mono
isPrime_map_quotientMk_of_isPrime
map_mono
minimalPrimes_eq_empty_iff πŸ“–mathematicalβ€”minimalPrimes
Set
Ideal
CommSemiring.toSemiring
Set.instEmptyCollection
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”exists_le_maximal
exists_minimalPrimes_le
IsMaximal.isPrime'
Set.notMem_empty
minimalPrimes_top
minimalPrimes_eq_subsingleton πŸ“–mathematicalIsPrimaryminimalPrimes
Ideal
CommSemiring.toSemiring
Set
Set.instSingletonSet
radical
β€”Set.ext
IsPrime.radical_le_iff
LE.le.antisymm
isPrime_radical
le_radical
minimalPrimes_eq_subsingleton_self πŸ“–mathematicalβ€”minimalPrimes
Ideal
CommSemiring.toSemiring
Set
Set.instSingletonSet
β€”Set.ext
LE.le.antisymm
Eq.le
minimalPrimes_isPrime πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
IsPrimeβ€”β€”
minimalPrimes_top πŸ“–mathematicalβ€”minimalPrimes
Top.top
Ideal
CommSemiring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instEmptyCollection
β€”Set.ext
IsPrime.ne_top
top_le_iff
nonempty_minimalPrimes πŸ“–mathematicalβ€”Set.Elem
Ideal
CommSemiring.toSemiring
minimalPrimes
β€”exists_le_maximal
exists_minimalPrimes_le
IsMaximal.isPrime'
radical_minimalPrimes πŸ“–mathematicalβ€”minimalPrimes
radical
β€”minimalPrimes.eq_1
Set.ext
IsPrime.radical_le_iff
sInf_minimalPrimes πŸ“–mathematicalβ€”InfSet.sInf
Ideal
CommSemiring.toSemiring
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
minimalPrimes
radical
β€”radical_eq_sInf
le_antisymm
mem_sInf
exists_minimalPrimes_le
sInf_le_sInf

IsDomain

Theorems

NameKindAssumesProvesValidatesDepends On
minimalPrimes_eq_singleton_bot πŸ“–mathematicalβ€”minimalPrimes
Ideal
CommSemiring.toSemiring
Set
Set.instSingletonSet
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.minimalPrimes_eq_subsingleton_self
Ideal.isPrime_bot
toNontrivial
to_noZeroDivisors

(root)

Definitions

NameCategoryTheorems
minimalPrimes πŸ“–CompOp
16 mathmath: minimalPrimes_eq_minimals, PrimeSpectrum.vanishingIdeal_irreducibleComponents, Ring.KrullDimLE.minimalPrimes_eq_setOf_isPrime, PrimeSpectrum.zeroLocus_minimalPrimes, PrimeSpectrum.isMin_iff, Ring.krullDimLE_one_iff, minimalPrimes.finite_of_isNoetherianRing, IsDomain.minimalPrimes_eq_singleton_bot, PrimeSpectrum.zeroLocus_ideal_mem_irreducibleComponents, Ideal.minimalPrimes_eq_comap, Ideal.primeHeight_eq_zero_iff, Ring.KrullDimLE.minimalPrimes_eq_setOf_isMaximal, PrimeSpectrum.stableUnderGeneralization_singleton, Ideal.mem_minimalPrimes_iff_isPrime, PrimeSpectrum.vanishingIdeal_mem_minimalPrimes, Ideal.mem_minimalPrimes_of_krullDimLE_zero

Theorems

NameKindAssumesProvesValidatesDepends On
minimalPrimes_eq_minimals πŸ“–mathematicalβ€”minimalPrimes
setOf
Ideal
CommSemiring.toSemiring
Minimal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.IsPrime
β€”β€”

---

← Back to Index