π Source: Mathlib/RingTheory/Ideal/MinimalPrime/Basic.lean
minimalPrimes
eq_bot_of_minimalPrimes_eq_empty
exists_minimalPrimes_le
map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes
mem_minimalPrimes_sup
minimalPrimes_eq_empty_iff
minimalPrimes_eq_subsingleton
minimalPrimes_eq_subsingleton_self
minimalPrimes_isPrime
minimalPrimes_top
nonempty_minimalPrimes
radical_minimalPrimes
sInf_minimalPrimes
minimalPrimes_eq_singleton_bot
minimalPrimes_eq_minimals
IsLocalization.minimalPrimes_map
height_le_iff_exists_minimalPrimes
exists_finset_card_eq_height_of_isNoetherianRing
mem_minimalPrimes_of_height_eq
finite_minimalPrimes_of_isNoetherianRing
IsMinimalPrimaryDecomposition.minimalPrimes_subset_image_radical
IsLocalization.minimalPrimes_comap
Ring.KrullDimLE.mem_minimalPrimes_iff_le_of_isPrime
minimalPrimes_eq_comap
minimalPrimes_map_of_surjective
Ring.KrullDimLE.mem_minimalPrimes_iff
Module.associatedPrimes.minimalPrimes_annihilator_subset_associatedPrimes
comap_minimalPrimes_eq_of_surjective
mem_minimalPrimes_of_primeHeight_eq_height
minimalPrimes_comap_subset
iUnion_minimalPrimes
Set
Ideal
CommSemiring.toSemiring
Set.instEmptyCollection
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.notMem_empty
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Set.instMembership
zorn_le_nonemptyβ
sInf_isPrime_of_isChain
IsChain.symm
OrderDual.ofDual_toDual
le_sInf_iff
OrderDual.le_toDual
sInf_le
Maximal.prop
Maximal.le_of_ge
CommRing.toCommSemiring
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
map
RingHom
RingHom.instFunLike
algebraMap
Quotient.semiring
Quotient.commSemiring
Quotient.ring
instIsTwoSided_1
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
sup_le_iff
RingHom.instRingHomClass
map_le_iff_le_comap
under_def
over_def
IsPrime.under
le_trans
le_comap_map
comap_mono
LiesOver.over
isPrime_map_quotientMk_of_isPrime
map_mono
comap_map_quotientMk
sup_of_le_right
exists_le_maximal
IsMaximal.isPrime'
IsPrimary
Set.instSingletonSet
radical
Set.ext
IsPrime.radical_le_iff
LE.le.antisymm
isPrime_radical
le_radical
Eq.le
IsPrime
IsPrime.ne_top
top_le_iff
Set.Elem
minimalPrimes.eq_1
InfSet.sInf
Submodule.instInfSet
radical_eq_sInf
le_antisymm
mem_sInf
sInf_le_sInf
Bot.bot
Submodule.instBot
Ideal.minimalPrimes_eq_subsingleton_self
Ideal.isPrime_bot
toNontrivial
to_noZeroDivisors
PrimeSpectrum.vanishingIdeal_irreducibleComponents
Ring.KrullDimLE.minimalPrimes_eq_setOf_isPrime
PrimeSpectrum.zeroLocus_minimalPrimes
PrimeSpectrum.isMin_iff
Ring.krullDimLE_one_iff
minimalPrimes.finite_of_isNoetherianRing
IsDomain.minimalPrimes_eq_singleton_bot
PrimeSpectrum.zeroLocus_ideal_mem_irreducibleComponents
Ideal.minimalPrimes_eq_comap
Ideal.primeHeight_eq_zero_iff
Ring.KrullDimLE.minimalPrimes_eq_setOf_isMaximal
PrimeSpectrum.stableUnderGeneralization_singleton
Ideal.mem_minimalPrimes_iff_isPrime
PrimeSpectrum.vanishingIdeal_mem_minimalPrimes
Ideal.mem_minimalPrimes_of_krullDimLE_zero
setOf
Minimal
Ideal.IsPrime
---
β Back to Index