📁 Source: Mathlib/RingTheory/Ideal/MinimalPrime/Localization.lean
comap_minimalPrimes_eq_of_surjective
disjoint_nonZeroDivisors_of_mem_minimalPrimes
exists_comap_eq_of_mem_minimalPrimes
exists_comap_eq_of_mem_minimalPrimes_of_injective
exists_minimalPrimes_comap_eq
exists_mul_mem_of_mem_minimalPrimes
iUnion_minimalPrimes
minimalPrimes_comap_subset
minimalPrimes_eq_comap
minimalPrimes_map_of_surjective
minimal_primes_comap_of_surjective
minimalPrimes_comap
minimalPrimes_map
notMem_of_mem_minimalPrimes
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
minimalPrimes
comap
RingHom.instRingHomClass
Set.image
Ideal
Set.ext
Set
Set.instMembership
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Submonoid.instSetLike
nonZeroDivisors
IsPrime
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
exists_ideal_comap_le_prime
LE.le.antisymm
IsPrime.comap
comap_mono
comap_bot_of_injective
exists_minimalPrimes_le
LE.le.trans_eq
SetLike.instMembership
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Eq.subset
Set.instReflSubset
Set.mem_biUnion
mul_pow
pow_zero
one_mul
Nat.find_spec
Nat.find_min
mul_assoc
pow_succ'
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Set.iUnion
setOf
radical
radical_eq_sInf
le_sInf_iff
Localization.isLocalization
map_le_iff_le_comap
mem_map_of_mem
IsLocalization.mem_map_algebraMap_iff
IsLocalization.eq_iff_exists
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
IsPrime.radical_le_iff
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
mul_mem_left
IsPrime.mem_or_mem
Set.instHasSubset
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
instHasQuotient
Quotient.ring
instIsTwoSided_1
instHasQuotient_1
Quotient.commSemiring
minimalPrimes.eq_1
Quotient.mk_surjective
RingHom.ker_eq_comap_bot
mk_ker
map
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
RingHom.ker
Set.image_injective
comap_injective_of_surjective
Set.image_comp
comap_map_of_surjective
Set.image_congr
sup_eq_left
LE.le.trans
le_sup_right
Set.image_id
RingHom.ker.eq_1
bot_le
map_isPrime_of_surjective
le_map_of_comap_le_of_surjective
map_le_of_le_comap
Ideal.minimalPrimes
Ideal.comap
algebraMap
map_comap
Set.image_preimage_eq_iff
subset_trans
Set.instIsTransSubset
Ideal.minimalPrimes_comap_subset
Set.preimage_range
Ideal.map
Set.preimage
Ideal.IsPrime.comap
Ideal.map_le_iff_le_comap
Set.disjoint_of_subset_right
isPrime_iff_isPrime_disjoint
Ideal.comap_mono
isPrime_of_isPrime_disjoint
Ideal.map_mono
comap_map_of_isPrime_disjoint
disjoint_comap_iff
Ideal.IsPrime.ne_top
IsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
Module.annihilator
Ideal.exists_mul_mem_of_mem_minimalPrimes
Iff.not
Module.mem_annihilator
right_eq_zero_of_smul
smul_smul
---
← Back to Index